
Oracle Rdb™

SQL Reference Manual
Volume 1

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

April 2012

®

SQL Reference Manual, Volume 1

Oracle Rdb Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers
and OpenVMS Alpha

Copyright © 1987, 2012 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Send Us Your Comments . xi

Preface . xiii

Technical Changes and New Features . xvii

1 Introduction to SQL Syntax

1.1 Using SQL . 1–1
1.1.1 Invoking SQL Images . 1–2
1.2 Samples Directory . 1–3
1.3 How to Read Syntax Diagrams . 1–3
1.4 Executable and Nonexecutable Statements . 1–6
1.5 Summary of SQL Statements . 1–7
1.6 Keywords and Line Terminators . 1–13
1.6.1 Statement Terminators and Comment Characters 1–14
1.7 Support for Multivendor Integration Architecture 1–17

2 Language and Syntax Elements

2.1 Supported Character Sets . 2–1
2.1.1 Automatic Translation . 2–6
2.1.2 Character Set HEX . 2–7
2.1.3 Default Character Sets . 2–8
2.1.4 Display Character Set . 2–9
2.1.5 Identifier Character Set . 2–10
2.1.6 Literal Character Sets . 2–11
2.1.7 National Character Set . 2–12
2.1.8 Character Set ISOLATIN9 . 2–13
2.1.9 Oracle NLS Character Set Names . 2–14
2.1.10 Character Set UNSPECIFIED . 2–15
2.1.11 Logical Names for Character Sets . 2–16

iii

2.2 User-Supplied Names . 2–16
2.2.1 Aliases . 2–25
2.2.2 Authorization Identifiers . 2–26
2.2.2.1 Authorization Identifiers and Stored Modules 2–27
2.2.2.2 Authorization Identifiers and Nonstored Modules 2–31
2.2.3 Catalog Names . 2–31
2.2.4 Column Names . 2–32
2.2.4.1 Correlation Names . 2–34
2.2.4.2 Outer References . 2–36
2.2.5 Connection Names . 2–37
2.2.6 Constraint Names . 2–38
2.2.7 Cursor Names . 2–38
2.2.8 Database Names . 2–38
2.2.8.1 Oracle Rdb Attach Specifications . 2–39
2.2.8.2 Repository Path Names . 2–42
2.2.9 Domain Names . 2–43
2.2.10 Index Names . 2–44
2.2.11 Names in Multischema Databases . 2–45
2.2.12 Nonstored Module, Procedure, and Parameter Names (Module

Language Only) . 2–46
2.2.13 Parameters, Routine Parameters, and SQL Variables 2–47
2.2.13.1 Data Parameters and Indicator Parameters 2–49
2.2.13.2 Host Structures and Indicator Arrays . 2–51
2.2.13.3 Multistatement Procedure Variables and Stored Routine

Parameters . 2–56
2.2.13.4 External Routine Parameters . 2–56
2.2.14 Statement Names (Dynamic SQL Only) . 2–57
2.2.15 Schema Names . 2–57
2.2.16 Storage Area Names . 2–59
2.2.17 Storage Map Names . 2–60
2.2.18 Stored Names . 2–60
2.2.19 Table and View Names . 2–61
2.2.20 Trigger Names . 2–64
2.3 Data Types . 2–65
2.3.1 Character Data Types . 2–69
2.3.1.1 Calculating the Maximum Length of a CHAR or VARCHAR

Column . 2–71
2.3.2 Date-Time Data Types . 2–72
2.3.3 DECIMAL and NUMERIC Data Types . 2–79
2.3.4 NUMBER Data Type . 2–80
2.3.5 Fixed-Point Numeric Data Types . 2–81
2.3.6 Floating-Point Numeric Data Types . 2–82

iv

2.3.7 LIST OF BYTE VARYING Data Type . 2–82
2.3.7.1 On-Disk Format of Lists . 2–84
2.3.8 Data Type Conversions . 2–87
2.3.8.1 Conversion from Unsupported Data Types 2–88
2.3.8.2 Conversion Between Supported Data Types 2–89
2.4 Literals . 2–94
2.4.1 Numeric Literals . 2–94
2.4.2 Character String Literals . 2–95
2.4.2.1 Quoted Character String Literals . 2–96
2.4.2.1.1 Quoted Character String Literals Qualified by a Character

Set . 2–98
2.4.2.1.2 Quoted Character String Literals Qualified by the National

Character Set . 2–98
2.4.2.2 Hexadecimal Character String Literals . 2–99
2.4.3 Date-Time Literals . 2–99
2.5 SQL and DATATRIEVE Formatting Clauses . 2–105
2.5.1 QUERY HEADER Clause . 2–107
2.5.2 EDIT STRING Clause . 2–107
2.6 Value Expressions . 2–124
2.6.1 NULL Keyword Used as an Expression . 2–133
2.6.2 Built-In Functions . 2–134
2.6.2.1 BITSTRING Function . 2–136
2.6.2.2 CAST Function . 2–137
2.6.2.3 CHARACTER_LENGTH Function . 2–140
2.6.2.4 CONCAT Function . 2–141
2.6.2.5 CONCAT_WS Function . 2–142
2.6.2.6 CONVERT Function . 2–143
2.6.2.7 CURRENT_DATE Function . 2–144
2.6.2.8 CURRENT_TIME and LOCALTIME Functions 2–144
2.6.2.9 CURRENT_TIMESTAMP and LOCALTIMESTAMP

Functions . 2–145
2.6.2.10 CURRENT_UID Function . 2–148
2.6.2.11 CURRENT_USER Function . 2–148
2.6.2.12 EXTRACT Function . 2–149
2.6.2.13 LENGTH Function . 2–153
2.6.2.14 LENGTHB Function . 2–153
2.6.2.15 LOWER Function . 2–153
2.6.2.16 OCTET_LENGTH Function . 2–154
2.6.2.17 POSITION Function . 2–156
2.6.2.18 ROUND Function . 2–158
2.6.2.19 SESSION_UID Function . 2–160
2.6.2.20 SESSION_USER Function . 2–160
2.6.2.21 SIZEOF Function . 2–160

v

2.6.2.22 SUBSTRING Function . 2–161
2.6.2.23 SYS_GET_DIAGNOSTIC Function . 2–163
2.6.2.24 SYS_GUID Function . 2–163
2.6.2.25 SYSDATE Function . 2–165
2.6.2.26 SYSTIMESTAMP Function . 2–165
2.6.2.27 SYSTEM_UID Function . 2–166
2.6.2.28 SYSTEM_USER Function . 2–166
2.6.2.29 TRANSLATE Function . 2–166
2.6.2.30 TRANSLATE USING Function . 2–168
2.6.2.31 TRIM Function . 2–172
2.6.2.32 TRUNC Function . 2–174
2.6.2.33 UPPER Function . 2–176
2.6.2.34 USER Function . 2–176
2.6.3 Aggregate Functions . 2–177
2.6.3.1 COUNT Function . 2–179
2.6.3.2 SUM Function . 2–179
2.6.3.3 AVG Function . 2–180
2.6.3.4 MAX Function . 2–180
2.6.3.5 MIN Function . 2–181
2.6.3.6 STDDEV Functions . 2–181
2.6.3.7 VARIANCE Functions . 2–182
2.6.4 User-Defined Functions . 2–183
2.6.5 Database Keys . 2–184
2.6.6 String Concatenation Operator . 2–187
2.6.7 Arithmetic Expressions and Operators . 2–188
2.6.8 Conditional Expressions . 2–193
2.6.8.1 ABS Function . 2–193
2.6.8.2 COALESCE and NVL Expressions . 2–195
2.6.8.3 CASE Expressions . 2–196
2.6.8.4 DECODE Function . 2–199
2.6.8.5 GREATEST and LEAST Functions . 2–200
2.6.8.6 NULLIF Expressions . 2–201
2.6.8.7 NVL2 Expressions . 2–202
2.6.8.8 SIGN Function . 2–203
2.7 Predicates . 2–204
2.7.1 Basic Predicate . 2–209
2.7.2 BETWEEN Predicate . 2–210
2.7.3 Complex Predicate . 2–212
2.7.4 CONTAINING Predicate . 2–215
2.7.5 EXISTS Predicate . 2–216
2.7.6 IN Predicate . 2–217
2.7.7 IS NULL Predicate . 2–218
2.7.8 LIKE Predicate . 2–219

vi

2.7.9 MATCHING Predicate . 2–228
2.7.10 Quantified Predicate . 2–229
2.7.11 SINGLE Predicate . 2–232
2.7.12 STARTING WITH Predicate . 2–233
2.7.13 UNIQUE Predicate . 2–234
2.8 Select Expressions and Column Select Expressions 2–234
2.8.1 Select Expressions . 2–236
2.8.2 Column Select Expressions . 2–265
2.9 Context Structures . 2–266
2.10 Database Options . 2–268
2.11 Using Context Files with SQL Module Language and SQL

Precompiler . 2–269

3 SQL Module Language

3.1 Overview of the SQL Module Language and Processor 3–1
3.2 SQL Module Language Syntax . 3–3
3.3 Declaring the Length of Character Parameters 3–40
3.4 Floating Point Number Representations . 3–44
3.5 Equivalent SQL and Host Language Data Types 3–49
3.6 SQL Module Language Processor Command Line 3–75

4 SQL Precompiler

4.1 Embedding SQL Statements in Programs . 4–1
4.1.1 Embedding Module Clauses in Host Language Code 4–1
4.1.2 Using the Two-Phase Commit Protocol in Embedded Programs 4–2
4.2 SQL Precompiler Syntax . 4–4
4.3 SQL Precompiler Command Line . 4–10
4.4 Host Language Variable Declarations Supported by the Precompiler . . . 4–30
4.4.1 Specifying Length of Character Parameters . 4–32
4.4.2 Supported Ada Variable Declarations . 4–35
4.4.3 Supported C Variable Declarations . 4–45
4.4.4 Supported COBOL Variable Declarations . 4–54
4.4.5 Supported FORTRAN Variable Declarations 4–58
4.4.6 Supported Pascal Variable Declarations . 4–64
4.4.7 Supported PL/I Variable Declarations . 4–72

vii

5 SQL Routines

sql_close_cursors . 5–3
sql_deregister_error_handler . 5–5
sql_get_error_handler . 5–6
sql$get_error_text . 5–8
sql_get_error_text . 5–12
sql_get_message_vector . 5–17
sql_register_error_handler . 5–22
sql_signal . 5–28

Index

Examples

2–1 Using Date-Time Data Types . 2–77
5–1 Using SQL Error Handling Routines . 5–23

Figures

1–1 Sample Syntax Diagram (FETCH) . 1–4
2–1 Authorization Identifiers and Stored Modules 2–29
2–2 Table with a List Column . 2–83
2–3 Chained List Format . 2–85
2–4 Indexed List Format . 2–86

Tables

1–1 Summary of SQL Statements . 1–7
2–1 Supported Character Sets . 2–2
2–2 Number of Octets Used by Characters in Character Sets 2–4
2–3 ISOLATIN1/ISOLATIN9 Character Set Differences 2–14
2–4 Oracle NLS Character Set Names Supported as Aliases 2–15
2–5 Summary of User-Supplied Names Used in SQL 2–20
2–6 Indicator Parameters and Null Values . 2–51
2–7 Stored and SQL Names . 2–61
2–8 Comparison of SQL Keywords with OpenVMS Data Types 2–65
2–9 Interval Qualifiers . 2–73

viii

2–10 Fields in Year-Month INTERVAL Columns . 2–75
2–11 Fields in Day-Time INTERVAL Columns . 2–76
2–12 Format of Text Strings Converted to or from DATE VMS Data

Type . 2–91
2–13 Conversion Rules . 2–93
2–14 Embedding Quotation Marks in Literals . 2–97
2–15 CDO Edit Strings Supported by SQL . 2–108
2–16 Alphabetic and Alphanumeric Replacement Edit String

Characters . 2–110
2–17 Numeric Replacement Edit String Characters 2–111
2–18 Alphanumeric Insertion Edit String Characters 2–112
2–19 Numeric Insertion Edit String Characters . 2–113
2–20 Alphanumeric and Numeric Insertion Edit String Characters 2–116
2–21 Numeric Floating Insertion Edit String Characters 2–118
2–22 Floating-Point, Null Value, and Missing Value Edit String

Characters . 2–119
2–23 Date Replacement Edit String Characters . 2–120
2–24 Built-In Functions . 2–134
2–25 Translation Names and Allowable Translations 2–169
2–26 Aggregate Functions . 2–177
2–27 Valid Operators Involving Date-Time and Interval Values 2–189
2–28 Conditional Expressions . 2–193
2–29 SQL Conditional Operators . 2–206
2–30 Boolean Operator: AND . 2–214
2–31 Boolean Operator: OR . 2–214
2–32 Boolean Operator: NOT . 2–214
2–33 Escape Character Sequences . 2–220
2–34 Wildcard Characters . 2–223
2–35 Quantified Predicate Result Table . 2–229
2–36 Summary of Different Forms of the Select Statement 2–235
2–37 Database Options . 2–269
3–1 Default Passing Mechanism for Host Languages to SQL Modules . . . 3–19
3–2 SQL and Corresponding OpenVMS Data Types for Module

Language . 3–51
3–3 Ada Declarations for SQL Formal Parameter Data Types 3–54
3–4 Ada Declarations and Floating Point Formats 3–57
3–5 BASIC Declarations for SQL Formal Parameter Data Types 3–59

ix

3–6 C Declarations for SQL Formal Parameter Data Types 3–61
3–7 COBOL Declarations for SQL Formal Parameter Data Types 3–64
3–8 FORTRAN Declarations for SQL Formal Parameter Data Types 3–66
3–9 Pascal Declarations for SQL Formal Parameter Data Types 3–68
3–10 PL/I Declarations for SQL Formal Parameter Data Types 3–70
4–1 Ending Embedded SQL Statements . 4–7
4–2 Precompiler Date-Time Data Mapping . 4–31
4–3 Ada Declarations for SQL Data Types . 4–43
4–4 Supported C Datatypes . 4–47
4–5 C Declarations for SQL Data Types . 4–50
4–6 COBOL Declarations for SQL Data Types . 4–57
4–7 Supported FORTRAN Datatypes . 4–59
4–8 FORTRAN Declarations for SQL Data Types 4–62
4–9 Pascal Declarations for SQL Data Types . 4–69
4–10 PL/I Declarations for SQL Data Types . 4–74
5–1 Sections in the Routine Template . 5–1
5–2 Relationship Between sql_message_vector and

RDB$MESSAGE_VECTOR . 5–18

x

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.2.5.2
Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

• Electronic mail:InfoRdb_US@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:
Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

xi

Preface

This manual describes the syntax and semantics of all the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xiii

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture (MIA).

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

xiv

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle
Rdb.

Index Index for each volume.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

xv

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.2
of Oracle Rdb software is often referred to as V7.2.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HP OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS Alpha and OpenVMS I64 operating
systems.

xvi

Technical Changes and New Features

Oracle Rdb Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for
Integrity Servers and OpenVMS Alpha has been enhanced in the following
areas.

The Oracle Rdb Release Notes describes current limitations and restrictions.

In addition a document is installed which contains all of the New Features
Chapters from all previous Rdb 7.2 Release Notes. It is called RDB_
NEWFEATURES_72xx and is available in postscript, text and PDF format in
the SYS$HELP directory.

Oracle Rdb Release 7.2.5.2 for OpenVMS Industry Standard 64 for Integrity
Servers and OpenVMS Alpha Servers has been enhanced in the following areas
since the original 7.2 release.

• New functions: SYS_GUID, SYSTIMESTAMP, SYS_GET_DIAGNOSTICS,
CONCAT, CONCAT_WS, SIGN, TRUNC and ROUND

• New COMPRESSION clause for CREATE TABLE, and DECLARE LOCAL
TEMPORARY TABLE

• New MATCHING predicate

• New keyword for GET DIAGNOSTICS statement: DATABASE_HANDLE

• Enhancements to SET FLAGS statement: ON ALIAS clause as well as new
keywords REWRITE, OPTIMIZATION_LEVEL, REBUILD_SPAM_PAGES

• Support for PROFILE now supports CREATE DEFAULT PROFILE,
ALTER DEFAULT PROFILE, and DROP DEFAULT PROFILE statements

• Enhancements to GET ENVIRONMENT statement: new keywords
SQLSTATE and SQLCODE

• New SET statements: SET SQLDA, SET LINESIZE, SET PAGESIZE, SET
LOGFILE and SET TIMING

• New SHOW statements: SHOW STATISTICS

xvii

• Support for PRAGMA clause in SQL Module language header, SQL
Precompiler DECLARE MODULE clause, as well as command line option

• The CREATE SYNONYM and RENAME commands now support INDEX
and STORAGE MAP objects

• Enhancements to SELECT statement include support for FETCH FIRST,
OFFSET and SKIP clauses

xviii

1
Introduction to SQL Syntax

SQL (structured query language) is a data definition and data manipulation
language for relational databases. Using SQL, you can create the data
definitions (the schema) that comprise the database, store data in a
database, and update both data and data definitions.

Most major vendors offer variations of SQL for their relational database
products. This fact often makes SQL the preferred interface at sites using
relational database products from a variety of vendors. In the Oracle Rdb
documentation set, SQL refers to the Oracle Rdb implementation of the SQL
standard ANSI/ISO/IEC 9075-1:1999, commonly referred to as the ANSI/ISO
SQL standard. Oracle Rdb mostly conforms to the CORE of the ANSI/ISO SQL
standard. Please refer to the Rdb Release Notes for the small list of SQL:1999
CORE features not currently supported by Oracle Rdb.

Relational database organization represents data in a two-dimensional format
that SQL calls tables. Tables in a relational database are similar to printed
tables. In SQL terminology, tables consist of a set of rows and columns. The
columns, which usually have names, divide each row into a set of individual
pieces of data.

1.1 Using SQL
You can use SQL statements in two ways:

• Interactively

You can use interactive SQL to learn how the SQL statements work, test
your data manipulation statements, and perform queries.

Invoke interactive SQL using the following commands:

$! Define a symbol for SQL:
$ SQL$ == SQL
$! Invoke SQL:
$ SQL$

Introduction to SQL Syntax 1–1

In prior versions of Rdb the keyword abbreviation and matching support
in interactive SQL would discard extraneous characters from a token if
an expected keyword matched the leading prefix. This was confusing in
some cases and interactive SQL now generates an informational message
to clearly state the substitution.

The following example shows the information message generated when
extra characters are trimmed from the keyword.

SQL> create trigger mytrigger
cont> after updatete on mytable2
%SQL-I-SPELLCORR, identifier UPDATETE replaced with UPDATE
cont> (insert into mytable values (mytable2.a, ’Any’, ’Value’))
cont> for each row;

• In high-level language programs

In an application program, you can use the same statements that you used
interactively. There are two ways to do this:

You can embed statements directly in the host language program and
process the program with the SQL precompiler.

You can create an SQL module file that contains SQL statements and
compile the file with the SQL module processor. High-level language
programs can link with the SQL module and call procedures from it to
execute the SQL statements.

See Chapter 3 for a description of the advantages of module language
as compared with the SQL precompiler.

Either way, with only minor adjustments, the statements you develop at
the terminal using interactive SQL can be included in programs. Chapter 3
tells how to invoke the SQL module processor, and Chapter 4 tells how to
invoke the SQL precompiler.

Section 1.4 describes the distinction SQL makes between executable and
nonexecutable statements. Table 1–1 in Section 1.5 summarizes the SQL
statements and those that are executable.

1.1.1 Invoking SQL Images
You can execute the RDB$SETVER.COM file to define global command
language symbols for use with the Oracle Rdb precompilers and interactive
utilities. This command procedure is particularly useful with the Oracle Rdb
multiversion kit.

The following SQL symbols are defined and are valid in both the standard and
multiversion environments:

• SQL$ = = "SQL"

1–2 Introduction to SQL Syntax

• SQL$PRE = = "$SQL$PRE"

• SQL$MOD = = "$SQL$MOD"

To define these symbols, type:

$ @SYS$LIBRARY:RDB$SETVER RESET

For more information regarding RDB$SETVER.COM and the corresponding
RDB$SHOVER.COM, see the Oracle Rdb Installation and Configuration
Guide.

1.2 Samples Directory
During installation, SQL installs a number of sample programs in a variety
of languages in the Samples directory on your system. This directory also
contains a command procedure or script to create sample databases.

The Samples directory is defined by the logical name SQL$SAMPLE.

1.3 How to Read Syntax Diagrams
This manual shows the format of SQL statements by using syntax diagrams.
Syntax diagrams graphically portray optional, required, and repeating
characteristics of SQL statements. You can learn the syntax of a statement by
reading that statement’s syntax diagram.

To read a syntax diagram, start at the upper-left corner and follow the arrows
until you exit from the diagram at the bottom right corner. When you come to
a branch in the path, choose the branch that contains the option you want. If
you want to omit an option, choose the path with no language elements. If a
diagram occupies more than one horizontal line, the arrow returns below the
end of each line to the left margin. Syntax diagrams can contain:

• Names of other syntax diagrams

If a diagram is named, the name appears in lowercase type above and to
the left of the diagram. Syntax diagrams can refer to each other by name.
The equal sign (=) indicates that the name is equivalent to the diagram
and that the diagram can be substituted wherever that name appears in
other diagrams. Such a substitution is similar to putting the name of a
column where the syntax element column-name appears.

• Keywords

Keywords appear in uppercase type. If a keyword is underlined, you must
include it in the SQL statement. A keyword that is not underlined is
optional. An optional keyword helps to make the statement more readable.
Omitting or including an optional keyword has no effect on the statement.

Introduction to SQL Syntax 1–3

• Punctuation marks

Punctuation marks are included in the diagram when required by the
syntax of the command or statement. For example, the semicolon (;) is a
statement terminator in statements that require terminators.

• User-supplied elements

User-supplied elements appear in lowercase type and within angle brackets
(< >) in syntax diagrams. These elements can include names, expressions,
and literals. If a user-supplied element appears on the main line of a
diagram, as cursor-name does in Figure 1–1, you are required to supply a
substitute for the element.

In text, a user-supplied element appears only in lowercase type.

Figure 1–1 shows the syntax diagram for the SQL FETCH statement.

Figure 1–1 Sample Syntax Diagram (FETCH)

FETCH <cursor-name>
fetch-orientation-clause FROM <parameter>

INTO <parameter>
<qualified-parameter>
<variable>

,
USING DESCRIPTOR <descriptor-name>

parameter =

: <data-parameter>

INDICATOR

: <indicator-parameter>

Typically, the descriptions of SQL statements in Chapter 6 and Chapter 7
follow syntax diagrams. The description is presented as an argument list,
with each entry of the list describing the corresponding element of the syntax
diagram. The following list shows the format of such an argument list but
describes syntax diagram conventions instead of the meaning of the arguments:

1–4 Introduction to SQL Syntax

Arguments
FETCH
Is in uppercase type and underlined on the main line of the diagram.
Therefore, you must supply this keyword.

cursor-name
parameter
Is in lowercase type in angle brackets on the main line of the diagram.
Therefore, you must supply a substitute for cursor-name or parameter. In
this manual, the description for user-supplied names such as cursor names
and the description for parameters is part of Chapter 2. The argument list
following a syntax diagram typically refers to Chapter 2 rather than repeating
the description.

INTO
Is optional; however, if you chose that branch, you must supply this keyword.

parameter
qualified-parameter
variable
Is in lowercase type in angle brackets on a branch. Because it always parallels
an empty branch, parameters and variables are optional. The subdiagram
expands the definition of parameter.

comma
Is on a reverse loop. The loop indicates that you have the option to include
more than one parameter or variable. If you do, they are separated by commas.

parameter
Is in lowercase type in angle brackets on a main branch. Parameters are
optional, but if you include them, each one must contain a main parameter. An
indicator parameter is optional and the keyword INDICATOR is optional.

All lowercase words are explained in the argument list that follows the
diagram. Some explanations refer you to other diagrams that appear elsewhere
in the manual.

Introduction to SQL Syntax 1–5

1.4 Executable and Nonexecutable Statements
SQL distinguishes between executable and nonexecutable statements in host
language programs, dynamic SQL, and interactive SQL.

• In host language programs, nonexecutable SQL statements are those
that SQL processes completely when it precompiles a program or compiles
an SQL module. Executable SQL statements also undergo processing
during precompile time or module compile time but do not execute until
the program runs.

When embedded in host language programs or included in SQL modules,
the following statements are nonexecutable:

BEGIN DECLARE (precompiled programs only)

DECLARE TRANSACTION

DECLARE ALIAS

DECLARE STATEMENT

DECLARE TABLE

DECLARE CURSOR

END DECLARE (precompiled programs only)

INCLUDE (precompiled programs only)

WHENEVER (precompiled programs only)

• In dynamic SQL, the following statement is nonexecutable:

DECLARE TRANSACTION

Nonexecutable statements in dynamic SQL take effect when SQL processes
the PREPARE statement for the statement. Issuing an EXECUTE
statement for a nonexecutable statement in dynamic SQL is valid but does
nothing.

• In interactive SQL, the following statements are nonexecutable:

DECLARE TRANSACTION

DECLARE CURSOR

Nonexecutable statements in interactive SQL mean that the operation
controlled by the statement does not occur until you enter an executable
statement. For example, a transaction you define in a DECLARE
TRANSACTION statement is not started until you enter a data
manipulation or definition statement, such as SELECT. Similarly, the

1–6 Introduction to SQL Syntax

result table you define in a DECLARE CURSOR statement is not created
until you enter an OPEN statement.

1.5 Summary of SQL Statements
Table 1–1 summarizes for all SQL statements the environments in which they
are allowed and processed. Specifically, the table shows for each statement
whether or not it can be:

• Issued interactively

• Embedded in host language programs to be precompiled

• Used as part of an SQL module language file

• Supplied to a program at run time for dynamic execution

• Treated as executable by SQL

• Included both in a simple and a compound statement (S/C), only in a
simple statement (S), or only in a compound statement (C)

For more information about using a statement in a particular environment,
including information about any restrictions, see Chapter 6, Chapter 7, and
Chapter 8.

Table 1–1 Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

ACCEPT X X S

ALTER CONSTRAINT X X X X X S

ALTER DATABASE X X X X X S

ALTER DOMAIN X X X X X S

ALTER FUNCTION X X X X X S

ALTER INDEX X X X X X S

ALTER MODULE X X X X X S

ALTER PROCEDURE X X X X X S

ALTER PROFILE X X X X X S

ALTER OUTLINE X X X X X S

(continued on next page)

Introduction to SQL Syntax 1–7

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

ALTER ROLE X X X X X S

ALTER SEQUENCE X X X X X S

ALTER SYNONYM X X X X X S

ALTER STORAGE MAP X X X X X S

ALTER TABLE X X X X X S

ALTER TRIGGER X X X X X S

ALTER USER X X X X X S

ATTACH X X X X X S

BEGIN DECLARE X S

CALL X X X X X S/C

CASE X X X X X C

CLOSE X X X X S

COMMENT ON X X X X X S

COMMIT X X X X X S/C

Compound statement X X X X X S/C

CONNECT X X X X X S

CREATE CATALOG X X X X X S

CREATE COLLATING SEQUENCE X X X X X S

CREATE DATABASE X X X X X S

CREATE DOMAIN X X X X X S

CREATE FUNCTION X X X X X S

CREATE INDEX X X X X X S

CREATE MODULE X X X X X S

CREATE OUTLINE X X X X X S

CREATE PROCEDURE X X X X X S

CREATE PROFILE X X X X X S

CREATE ROLE X X X X X S

CREATE SCHEMA X X X X X S

(continued on next page)

1–8 Introduction to SQL Syntax

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

CREATE SEQUENCE X X X X X S

CREATE STORAGE MAP X X X X X S

CREATE SYNONYM X X X X X S

CREATE TABLE X X X X X S

CREATE TRIGGER X X X X X S

CREATE USER X X X X X S

CREATE VIEW X X X X X S

DECLARE ALIAS X X S

DECLARE CURSOR X X X S

Dynamic DECLARE CURSOR X X S

Extended Dynamic DECLARE
CURSOR

X X X S

DECLARE FUNCTION X X X S

DECLARE LOCAL TEMPORARY
TABLE

X X X S

DECLARE MODULE X S

DECLARE PROCEDURE X X X S

DECLARE STATEMENT X X S

DECLARE TABLE X X S

DECLARE variable X X S/C

DECLARE TRANSACTION X X X X S

DELETE X X X X X S/C

DESCRIBE X X X S

DISCONNECT X X X X X S

DROP CATALOG X X X X X S

DROP COLLATING SEQUENCE X X X X X S

DROP CONSTRAINT X X X X X S

DROP DATABASE X X X X X S

(continued on next page)

Introduction to SQL Syntax 1–9

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

DROP DOMAIN X X X X X S

DROP FUNCTION X X X X X S

DROP INDEX X X X X X S

DROP MODULE X X X X X S

DROP OUTLINE X X X X X S

DROP PATHNAME X X X X X S

DROP PROCEDURE X X X X X S

DROP ROLE X X X X X S

DROP SCHEMA X X X X X S

DROP SEQUENCE X X X X X S

DROP STORAGE MAP X X X X X S

DROP SYNONYM X X X X X S

DROP TABLE X X X X X S

DROP TRIGGER X X X X X S

DROP USER X X X X X S

DROP VIEW X X X X X S

EDIT X X

END DECLARE X S

Execute (@) X X

EXECUTE X X X S

EXECUTE IMMEDIATE X X X S

EXIT X X

EXPORT X X

FETCH X X X X S

FOR X X X X X C

GET DIAGNOSTICS X X X X X C

GET ENVIRONMENT X X S

(continued on next page)

1–10 Introduction to SQL Syntax

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

GRANT X X X X X S

GRANT (ANSI style) X X X X X S

HELP X X

IF X X X X X C

IMPORT X X

INCLUDE X S

INSERT X X X X X S/C

INTEGRATE X X

ITERATE X X X X X C

LOCK TABLE X X X X X S/C

LEAVE X X X X X C

LOOP X X X X X C

OPEN X X X X S

Operating System Invocation ($) X X

PREPARE X X X S

PRINT X X

QUIT X X

RELEASE X X X S

RENAME X X X X X S

REPEAT X X X X X C

RETURN X X X X X C

REVOKE X X X X X S

REVOKE (ANSI style) X X X X X S

ROLLBACK X X X X X S/C

SELECT (general form) X X X S

SELECT (singleton select) X X X X X S/C

SET X X C

(continued on next page)

Introduction to SQL Syntax 1–11

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

SET ALIAS X X X X X S

SET ALL CONSTRAINTS X X X X X S

SET assignment X X X X X C

SET AUTOMATIC TRANSLATION X X S

SET CATALOG X X X X X S

SET CHARACTER LENGTH X X X X X S

SET COMPOUND TRANSACTIONS X X X X X S

SET CONNECT X X X X X S

SET DEFAULT CHARACTER SET X X X X X S

SET DEFAULT DATE FORMAT X X X X X S

SET DIALECT X X X X X S

SET DISPLAY X S

SET DISPLAY CHARACTER SET X X X X X S

SET ECHO X X S

SET FEEDBACK X X S

SET FLAGS X X X S

SET HEADING X X S

SET HOLD CURSORS X X X X X S

SET IDENTIFIER CHARACTER
SET

X X X X X S

SET KEYWORD RULES X X X X X S

SET LITERAL CHARACTER SET X X X X X S

SET NAMES X X X X X S

SET NATIONAL CHARACTER SET X X X X X S

SET NULL X X S

SET OPTIMIZATION LEVEL X X X X X S

SET QUIET COMMIT X X S

SET QUOTING RULES X X X X X S

(continued on next page)

1–12 Introduction to SQL Syntax

Table 1–1 (Cont.) Summary of SQL Statements

Statement
Inter-
active

Pre-
compiled

Module
Language

Dynamically
Executable Executable

Simple
and/or
Compound

SET SCHEMA X X X X X S

SET SESSION AUTHORIZATION X X X X X S

SET TIMING X X S

SET TRANSACTION X X X X X S/C

SET VIEW UPDATE RULES X X X X X S

SHOW X X

SIGNAL X X X X X C

START TRANSACTION X X X X X S/C

TRACE X X X X X C

TRUNCATE TABLE X X X X X S

UNDECLARE variable X X S

UPDATE X X X X X S

WHENEVER X S

WHILE X X X X X S

1.6 Keywords and Line Terminators
In syntax diagrams, keywords are shown in uppercase type. In interactive
SQL, you can abbreviate keywords as long as the abbreviation uniquely
specifies a syntactically allowed choice. You cannot abbreviate keywords
in SQL statements used in a host language program (precompiled, module
language, or dynamic SQL).

There are two types of keywords:

• Required - uppercase and underlined

• Optional - uppercase only

Introduction to SQL Syntax 1–13

1.6.1 Statement Terminators and Comment Characters
You must end SQL statements in different ways depending on the environment
in which you issue them:

• In interactive SQL, you must end statements with a semicolon (;).

The only exceptions to this rule are statements that are valid only within
interactive SQL: the operating system invocation ($), Execute (@), EDIT,
EXIT, QUIT, SET, and SHOW.

You can explicitly continue a line in interactive SQL by ending it with a
hyphen (-). The continuation character takes precedence over the minus
operator. If you intend to use the hyphen as the minus operator in a query,
avoid typing it as the last element on a continued line. You can, however,
type a double hyphen as shown below:

SQL> SELECT col1 - -
cont> col2 FROM my_table;

In the preceding example, the second hyphen is interpreted as the
continuation character leaving the first hyphen to be interpreted as
the minus operator.

You can also use the SET with the CONTINUE CHARACTER argument
to define the continuation character for interactive SQL. See the SET
Statement for more information.

• In precompiled programs, the statement terminator depends on the host
language:

COBOL: END-EXEC

FORTRAN: none required

Ada: a semicolon (;)

C: a semicolon (;)

Pascal: a semicolon (;)

PL/I: a semicolon (;)

• In SQL module language files, DECLARE statements are not terminated.
Other statements end in a semicolon.

• Dynamic SQL allows an optional statement terminator. In some cases, this
statement terminator will assist SQL in processing ambiguous syntax.

1–14 Introduction to SQL Syntax

As with statement terminators, the notation that SQL recognizes as denoting
comments depends on the environment:

• Interactive SQL interprets the exclamation point (!) or the double hyphen
(--) as a comment character. Interactive SQL disregards any characters on
a line following an exclamation point or double hyphen.

Note

Oracle Rdb recommends use of the double hyphen (--) as a comment
character. This allows portability of interactive SQL statements into
SQL module language programs and is also in conformance with the
ANSI/ISO standard.

• Oracle Rdb supports multiline and embedded comments for compatibility
with the Oracle Database.

These comments start with the characters "/*" and are terminated (possibly
on a subsequent line) by "*/". There can be no spaces between the "*" and
"/" characters which open and close a comment.

Because this style of comment is often used to disable statements in
an SQL command scripts, Rdb supports nested comments. This allows
comments within an existing sequence of SQL commands to be ignored
when used in larger comment sequence. i.e. only the matching */ will close
the comment. This is shown in the following examples.

Note

Nested comments are not supported by the ORACLE LEVEL1 or
ORACLE LEVEL2 dialects.

Because an unterminated comment is often difficult to find, the interactive
SQL prompt is changed to ’***>’ for each line which is a comment
continuation.

Oracle Rdb continues to support the exclamation point (!) and the double
hyphen (--) as comment introducers which can be used to comment the
end of a single line. The end-of-line is considered the comment closer.

Example:

Introduction to SQL Syntax 1–15

The following examples show embedded and a multiline comments.

SQL> -- show that text is hidden
SQL> show /* current */ version
Current version of SQL is: Oracle Rdb SQL V8.0-00
SQL>
SQL> /*
> *******************************
***> The following query fetches the
***> JOB_HISTORY row for the current job
***> of employee 164 (aka Alvin Toliver)
> ********************************
***> */
SQL> select department_code,
cont> job_start /*, employee_id*/
cont> from JOB_HISTORY
cont> where employee_id = ’00164’
cont> and job_end is null;
DEPARTMENT_CODE JOB_START
MBMN 21-Sep-1981
1 row selected
SQL>
SQL> /* disable this CREATE VIEW
***> create view V_00164
***> as select e.last_name, /* e.middle_initial, */ e.first_name,
***> sh.salary_amount
***> from EMPLOYEES e, SALARY_HISTORY sh
***> where e.employee_id = ’00164’
***> and sh.employee_id = e.employee_id;
***>
***> select * from V_00164;
***> select count/*all*/(*) from V_00164;
***> */
SQL>

• The SQL precompiler uses host language rules for comments in embedded
SQL statements.

• The SQL module processor interprets the double hyphen as a comment
character.

• Dynamic SQL interprets the double hyphen as a comment character.

1–16 Introduction to SQL Syntax

1.7 Support for Multivendor Integration Architecture
Oracle Rdb supports Multivendor Integration Architecture (MIA). This
support includes the following:

• Several character sets in addition to the DEC Multinational Character Set
(MCS). For information about the supported character sets, see Section 2.1.

• Using multiple character sets in one database.

• Specifying character sets for database objects, identifiers, literals, and
character data type parameters.

• Using delimited identifiers to maintain the case of an identifier. For more
information, see Section 2.2.

• Specifying character lengths and offsets in characters, rather than octets.

• Using the SET DIALECT ’MIA’ statement that sets the MIA-compliant
character sets, which are:

– Default character set: KATAKANA

– National character set: KANJI

– Identifier character set: DEC_KANJI

– Literal character set: KATAKANA

In addition, SQL provides support for new character data type variables in
SQL precompiled C, COBOL, and FORTRAN programs. See the description of
the data types in Sections 4.4.3, 4.4.4, and 4.4.5.

SQL also lets you specify a particular character set or the national character
set for formal parameters in SQL module language. For more information, see
Section 3.2 and DECLARE MODULE Statement.

When you use character sets other than MCS, be aware of the effect the
character set has on the following elements:

• LIKE predicate: See Section 2.7.8.

• Substrings: See Section 2.6.2.22.

• Conversions between data types: See Section 2.3.8.

• String concatenation operator: See Section 2.6.6.

Introduction to SQL Syntax 1–17

During installation, SQL installs a number of sample programs in a variety of
languages. These programs are in the Samples directory on your system, and a
brief description of each can be found in the file about_sql_examples.txt in the
samples directory. One of these programs, called MIA_CHAR_SET, creates a
database that uses the different character sets required to be MIA compliant:

• sql_mia_char_set_mod.c is the C program source file.

• sql_mia_char_set_c.sqlmod is the SQL module file.

• sql_mia_char_set_pre.sc is the SQL precompiler file.

1–18 Introduction to SQL Syntax

2
Language and Syntax Elements

SQL uses a number of basic syntax and language elements that are common
to many statements. These elements are sometimes referred to in syntax
diagrams without further explanation. This chapter describes those elements:

• Character sets

• Names

• Data types

• Literals

• SQL and DATATRIEVE formatting clauses

• Value expressions

• Predicates

• Select expressions and column select expressions

For guidelines on how to form SQL statements to perform certain tasks,
see the Oracle Rdb Introduction to SQL and the Oracle Rdb Guide to SQL
Programming.

2.1 Supported Character Sets
Oracle Rdb supports multiple character sets and lets you use more than one
character set in a database.

Table 2–1 shows the supported character sets, their names as you specify them
in SQL statements, and descriptions of the character sets.

Language and Syntax Elements 2–1

Table 2–1 Supported Character Sets

Character Set1 Description

AL24UTFFSS UTF-8 encoding based on the Unicode standard 1.1

ASCII 7-bit ASCII characters

ARABIC Arabic characters as defined by the ISO9036 standards

BIG5 A set of characters used by the Taiwan information industry

DEC_HANYU Traditional Chinese characters (Hanyu) as used in Taiwan and defined
by standard CNS11643:1986, supplemental characters as defined by
DTSCC and ASCII

DEC_HANZI Chinese (Bopomofo) characters as defined by standard GB2312:1980
and ASCII characters

DEC_KANJI Japanese characters as defined by the JIS X0208:1990 standard,
Hankaku Katakana characters as defined by JIS X0201:1976 prefixed
by SS2 (8E hex), user-defined characters, and ASCII characters

DEC_KOREAN Korean characters as defined by standard KS C5601:1987 and ASCII
characters

DEC_MCS A set of international alphanumeric characters, including characters
with diacritical marks

DEC_SICGCC Traditional Chinese characters (Hanyu) as used in Taiwan and defined
by standard CNS11643:1986 and ASCII

DEVANAGARI Devanagari characters as defined by the ISCII:1988 standard

DOS_LATIN1 DOS Latin 1 code

DOS_LATINUS DOS Latin US code

GB18030 Simplified Chinese characters as used by the People’s Republic of
China (PRC) and defined by the GB18030-2000 standard

HANYU Traditional Chinese characters (Hanyu) as used in Taiwan and defined
by the standard CNS11643:1986

HANZI Chinese (Bopomofo) characters as defined by standard GB2312:1980

HEX Translation of text data to and from hexadecimal data

ISOLATIN1 Extended European characters as defined by the ISO/IEC 8859-1:1987
standard

ISOLATIN9 Extended European characters as defined by the ISO/IEC 8859-15
standard which includes the Euro Character code-point.

ISOLATINARABIC Arabic characters as defined by the ISO/IEC 8859-6:1987 standard

1To allow easy portability of applications across national boundaries, you can use a logical name in
place of a character set name. See Section 2.1.11 for more information.

(continued on next page)

2–2 Language and Syntax Elements

Table 2–1 (Cont.) Supported Character Sets

Character Set1 Description

ISOLATINCYRILLIC Cyrillic characters as defined by the ISO/IEC 8859-5:1987 standard

ISOLATINGREEK Greek characters as defined by the ISO/IEC 8859-7:1987 standard

ISOLATINHEBREW Hebrew characters as defined by the ISO/IEC 8859-8:1987 standard

KANJI Japanese characters as defined by the JIS X0208:1990 standard and
user-defined characters

KATAKANA Japanese phonetic alphabet (Hankaku Katakana), as defined by
standard JIS X0201:1976

KOREAN Korean characters as defined by standard KS C5601:1987

SHIFT_JIS Japanese characters as defined by the JIS X0208:1990 standard using
Shift_JIS specific encoding scheme, Hankaku Katakana characters as
defined by JIS X0201:1976, and ASCII characters

TACTIS Thai characters based on TACTIS (Thai API Consortium/Thai
Industrial Standard) which is a combination of ISO 646-1983 and
TIS 620-2533 standards

UNICODE Unicode characters as described by Unicode Standard and ISO/IEC
10646 transformation format UTF-16

UNSPECIFIED See Section 2.1.10.

UTF8 Unicode characters as described by Unicode Standard and ISO/IEC
10646 UTF-encoding form

WIN_ARABIC MS Windows Code Page 1256
8-Bit Latin/Arabic

WIN_CYRILLIC MS Windows Code Page 1251
8-Bit Latin/Cyrillic

WIN_GREEK MS Windows Code Page 1253
8-Bit Latin/Greek

WIN_HEBREW MS Windows Code Page 1255
8-Bit Latin/Hebrew

WIN_LATIN1 MS Windows Code Page 1252
8-Bit West European

1To allow easy portability of applications across national boundaries, you can use a logical name in
place of a character set name. See Section 2.1.11 for more information.

Any of the supported character sets can be used whenever character sets are
specified, except as the identifier character set. For information about the
identifier character set, see Section 2.1.5.

Character sets differ in how characters are coded. That is, characters in some
character sets are coded entirely in one octet; characters in other character
sets are coded in more than one octet. (An octet is a group of 8 bits.)

Language and Syntax Elements 2–3

The various ways characters can be coded are:

• Single-octet

A single-octet character set is entirely represented in one octet. ASCII
is an example of a single-octet character set. Each ASCII character is
represented in one octet.

• Multi-octet

A multi-octet character set is, in general, entirely represented in one or
more octets. Some character sets are fixed multi-octet character sets and
some are mixed multi-octet characters.

– Fixed multi-octet

A fixed multi-octet character set is represented by two or more fixed
number of octets. Kanji is an example of a fixed multi-octet character
set. Each Kanji character is represented in two octets.

– Mixed multi-octet

A mixed multi-octet character set is represented by one or more
mixed number of octets that allow the use of ASCII and a fixed multi-
octet character set in the same string. DEC_KANJI is an example of a
mixed multi-octet character set. The ASCII characters are represented
in one octet, and the Kanji characters are represented in two octets.

Table 2–2 shows how many octets each of the supported character sets uses to
code a single character.

Table 2–2 Number of Octets Used by Characters in Character Sets

Character Set Number of Octets Used for Each Character

Single-Octet Character Sets

ASCII One octet

DEC_MCS One octet

DOS_LATIN1 One octet

DOS_LATINUS One octet

ISOLATINARABIC One octet

ISOLATINHEBREW One octet

ISOLATINCYRILLIC One octet

(continued on next page)

2–4 Language and Syntax Elements

Table 2–2 (Cont.) Number of Octets Used by Characters in Character Sets

Character Set Number of Octets Used for Each Character

Single-Octet Character Sets

ISOLATINGREEK One octet

ISOLATIN1 One octet

ISOLATIN9 One octet

DEVANAGARI One octet

KATAKANA One octet

TACTIS One octet

UNSPECIFIED One octet

WIN_* One octet

Fixed Multi-Octet Character Sets

BIG5 Two octets

HEX Two octets

HANYU Two octets

HANZI Two octets

KANJI Two octets

KOREAN Two octets

UNICODE Two octets

Mixed Multi-Octet Character Sets

AL24UTFFSS One to three octets as specfied by UTF-8 standard

DEC_KOREAN One octet for ASCII characters; two octets for
KOREAN characters

DEC_SICGCC One octet for ASCII characters; two octets for
Hanyu characters

(continued on next page)

Language and Syntax Elements 2–5

Table 2–2 (Cont.) Number of Octets Used by Characters in Character Sets

Character Set Number of Octets Used for Each Character

Mixed Multi-Octet Character Sets

DEC_HANYU One octet for ASCII characters; two octets for
Hanyu characters; four octets for supplemental
characters

DEC_HANZI One octet for ASCII characters; two octets for
HANZI characters

DEC_KANJI One octet for ASCII characters; two octets for
KANJI characters; two octets for Hankaku
Katakana characters (SS2 (8E hex) prefix plus
single octet JIS X0201 character)

SHIFT_JIS One octet for ASCII characters; one octet for
Hankaku Katakana characters; two octets for
KANJI characters using SHIFT_JIS encoding

UTF8 One to three octets as specfied by UTF-8 standard

You cannot use a multi-octet character in an edit string or in a file name,
repository path name, or database name.

2.1.1 Automatic Translation
During operations on text data such as assignments of a literal to a text
column or the comparison of two string variables, Oracle Rdb carries out
character set compatibility checks to ensure that the operation is viable.

Without automatic translation being enabled this checking is quite restrictive
in that in most cases the two text objects must have identical character set
before the operation is allowed.

The automatic translation feature allows you to choose whether the character
set checking should be restrictive or whether Rdb should attempt a character
set translation, similar to that provided by the TRANSLATE function prior to
assignments or comparisons.

With automatic translation enabled you may easily carry out operations that
previously required additional translations steps to be carried out explicitly.

1. Carry out comparisons between columns that contain data encoded in
different character sets that have common character subsets, for example,
DEC_MCS and DEC_KANJI have ASCII in common.

2–6 Language and Syntax Elements

2. Use the same SQL code to access database data irrespective of the client’s
environment. For example, a user on a Japanese PC accessing a DEC_MCS
column would have to add TRANSLATE statements to the SQL commands
to convert the DEC_MCS to SHIFT_JIS before they could display it on
their screen. With automatic translation enabled and a Display Character
set specified, this would not be required.

3. Enter data from a native interface without explicit translations. For
example, users using SHIFT_JIS on a Japanenese PC may access and
insert data into a DE_KANJI column in the database without explicit
translations statements.

You may enabled automatic translation by:

1. Using a SET AUTOMATIC TRANSLATION statement

2. Defining the SQL$AUTOMATIC_TRANSLATION logical name

SQL$AUTOMATIC_TRANSLATION
The logical name SQL$AUTOMATIC_TRANSLATION allows SQL users to
specify that automatic translations should be enabled by default.

The logical SQL$AUTOMATIC_TRANSLATION may be placed in any logical
name table accessible to the client SQL process.

If the logical name is set to either the string ’TRUE’ or the value ’T’ prior to
invoking SQL, then automatic translation will be enabled by default, any other
value will disable automatic translation within SQL.

2.1.2 Character Set HEX
The character set HEX is comprised of two octet hexadecimal characters ’00’
through ’FF’ and has the characteristic that the contents of data objects with
this character set will not be automatically translated to the display character
set when automatic translation has been enabled.

It may be used in conjunction with the CAST and TRANSLATE functions to
obtain the hexadecimal equivalence of text objects.

Translation to the HEX character set will translate source data octet by octet
into hexadecimal notation.

Translation from the HEX character set will translate from hexadecimal
notation to the destination character set.

Language and Syntax Elements 2–7

For example:

SQL> show character sets
Default character set is DOS_LATINUS
National character set is DOS_LATINUS
Identifier character set is DOS_LATINUS
Literal character set is DOS_LATINUS
Display character set is DOS_LATINUS

Alias RDB$DBHANDLE:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is DEC_MCS
SQL> show automatic translation
Automatic translation: ON
SQL> create tab latin (f1 char(4) char set win_latin1,
cont> f2 char(4) char set dos_latinus);
SQL> insert into latin value (’AÉÖ’,’AÉÖ’);
1 row inserted
SQL> select f1, cast(f1 as char(8) char set hex),
cont> f2, cast(f2 as char(8) character set hex) from latin;
F1 F2
AÉÖ 41C9D620 AÉÖ 41909920
1 row selected
SQL> select cast (_hex’9099’ as char(2)) from rdb$database;

ÉÖ
1 row selected
SQL> select translate (_hex’9099’ using rdb$dos_latinus)
Cont> from rdb$database;
ÉÖ

1 row selected

The previous example also shows automatic translations between the literals
character set DOS_LATINUS and the field F2 containing WIN_LATIN1, and
the subsequent automatic translation from the F2 field back to the display
character set.

The hexadecimal display of the field contents shows that the actual data stored
in the database is different for field f1 and f2 even though the input literals
and the output displayed appears identical.

2.1.3 Default Character Sets
The default character set is the character set that SQL uses for the following
elements:

• Database columns with a character data type that does not explicitly
specify a character set

• Parameters that are not qualified by a character set

2–8 Language and Syntax Elements

You can specify the default character set at the session and database level. See
the Oracle Rdb Introduction to SQL and Oracle Rdb Guide to Database Design
and Definition for more detail about session and database character sets.

You can specify the database default character set only when you create the
database. You cannot change the database default character set after you have
created the database.

SQL uses DEC_MCS as the default character set, unless you have set the
dialect to MIA or specified a default character set at the session level. You can
override any default character set by specifying another default character set
when creating a database.

To specify the default character set, use one of the character set names listed
in Section 2.1.

The default character set does not affect the setting of the currency sign.

When you compile SQL programs (either SQL module language or precompiled
SQL), SQL uses the following to derive the default character set:

• The DEFAULT CHARACTER SET clause in the DECLARE ALIAS
statement specifies the default character set of the alias at compile time.
At run time, SQL uses the default character set of the attached database.
At run time, you must ensure that the database default character set is
identical to the default character set specified in the DECLARE ALIAS
clause.

• The DEFAULT CHARACTER SET clause of the SQL module header or the
DECLARE MODULE statement specifies the character set for parameters
that are not qualified by a character set.

• In dynamic SQL, the SET DEFAULT CHARACTER SET statement
specifies, at run time, the character set for parameters that are not
qualified by a character set.

• The RDB$CHARACTER_SET logical name. However, the logical name is
deprecated and will not be supported in a future release.

2.1.4 Display Character Set
The display character set is the character set SQL uses for determining the
character set that text will automatically be translated to before display in
interactive SQL or for text being returned by SQL to a user program.

You can specify the display character set only for a session or a module by
using the SET DISPLAY CHARACTER SET statement or the DISPLAY
CHARACTER SET clause of the SQL module header, the DECLARE MODULE
statement, or the DECLARE ALIAS statement.

Language and Syntax Elements 2–9

The choice of display character set is limited to those character sets that
include ASCII characters. Section 2.1.5 identifies the subset of character sets
that you can use to specify the display character set.

2.1.5 Identifier Character Set
The identifier character set is the character set SQL uses for database object
names, such as table names and column names. You can specify the identifier
character set at the session and database level. The choice of identifier
character set is limited to those character sets that include ASCII characters.
This is necessary so that the object names for the Oracle Rdb system metadata,
which is in ASCII, can be stored.

You can specify the identifier character set for the database only when you
create the database. You cannot alter the identifier character set of a database
after creation.

Following is a list of the character sets used for the identifier character set:

• ASCII

• AL24UTFFSS

• DEC_MCS

• DOS_LATIN1

• DOS_LATINUS

• DEVANAGARI

• DEC_SICGCC

• DEC_HANYU

• DEC_HANZI

• ISOLATINARABIC

• ISOLATINCYRILLIC

• ISOLATIN1

• ISOLATIN9

• ISOLATINGREEK

• ISOLATINHEBREW

• DEC_KANJI

• KATAKANA

• DEC_KOREAN

2–10 Language and Syntax Elements

• SHIFT_JIS

• UTF8

• UNSPECIFIED

• TACTIS

• WIN_ARABIC

• WIN_GREEK

• WIN_CYRILLIC

• WIN_HEBREW

When you compile SQL programs (either SQL module language or precompiled
SQL), SQL uses the following to derive the identifier character set:

• The IDENTIFIER CHARACTER SET clause of the SQL module header
or the DECLARE MODULE statement specifies the character set for
parameters that are not qualified by a character set.

• In dynamic SQL, the SET IDENTIFIER CHARACTER SET statement
specifies, at run time, the character set for parameters that are not
qualified by a character set.

• The RDB$CHARACTER_SET logical name. However, the logical name is
deprecated and will not be supported in a future release.

SQL uses DEC_MCS as the identifier character set, unless you have set the
dialect to MIA or specified an identifier character set at the session level.
You can override any identifier character set by specifying another identifier
character set when creating a database.

2.1.6 Literal Character Sets
The literal character set is the character set SQL uses for unqualified
character string literals.

You can specify the literal character set only for a session or a module by
using the SET LITERAL CHARACTER SET statement or the LITERAL
CHARACTER SET clause of the SQL module header, the DECLARE MODULE
statement, or the DECLARE ALIAS statement.

When inserting data into a column, you must qualify the literal with the same
character set with which you defined the column.

Language and Syntax Elements 2–11

For example, suppose that the literal character set of the module is DEC_MCS.
If the column ENGLISH is defined as data type DEC_MCS, SQL returns an
error when you execute the following statement:

SQL> INSERT INTO COLOURS
cont> (ENGLISH)
cont> VALUES
cont> (_DEC_KANJI’Black’);
%SQL-F-INCCSASS, Incompatible character set assignment between ENGLISH and
<value expression>
SQL>

2.1.7 National Character Set
The national character set is a shorthand notation that you can use for
a character set of your choice. SQL uses the national character set for the
following elements:

• For all columns and domains with the data type NCHAR or NCHAR
VARYING and for the NCHAR data type in a CAST function. For
information about these data types, see Section 2.3.1.

• For all parameters in SQL module language with the data type NCHAR or
NCHAR VARYING.

• For all character string literals qualified by the national character set; that
is, the literal is preceded by the letter N and a single quotation mark (for
example, N’). For more information, see Section 2.4.2.1.2.

To specify the national character set, use one of the character set names listed
in Table 2–1.

You can specify the national character set at the session and database level.
See the Oracle Rdb Introduction to SQL and the Oracle Rdb Guide to Database
Design and Definition for more detail about session and database character
sets.

You specify the national character set for a database when you create the
database. You cannot alter the national character set of a database.

SQL uses DEC_MCS as the national character set, unless you have set the
dialect to MIA or specified a national character set at the session level. You can
override any national character set by specifying another national character
set when creating a database.

When you compile SQL programs (either SQL module language or precompiled
SQL), SQL uses the following to derive the national character set:

• The NATIONAL CHARACTER SET clause in the DECLARE ALIAS
statement specifies the national character set of the alias at compile time.

2–12 Language and Syntax Elements

It controls the national character set for column and domain definitions
and the NCHAR and NCHAR VARYING data types in a CAST function. At
run time, SQL uses the national character set of the attached database for
these elements.

• The NATIONAL CHARACTER SET clause of the SQL module header and
the DECLARE MODULE statement specifies the character set for literals
qualified by the national character set and for parameters defined with the
data type NCHAR or NCHAR VARYING.

• In dynamic SQL, the SET NATIONAL CHARACTER SET statement
specifies, at run time, the character set for columns with the data type
NCHAR and NCHAR VARYING and for character string literals qualified
by the national character set.

• The RDB$CHARACTER_SET logical name. However, the logical name is
deprecated and will not be supported in a future release.

Note

Although SQL does not require that the national character set of the
database and the module match, Oracle Rdb recommends that you
define both with the same character set.

2.1.8 Character Set ISOLATIN9
Oracle Rdb supports the ISOLATIN9 character set (as described by ISO 8859-15).

ISOLATIN9 is similar to ISOLATIN1 except for 8 codepoints.

Table 2–3 compares ISOLATIN9 and ISOLATIN1.

Language and Syntax Elements 2–13

Table 2–3 ISOLATIN1/ISOLATIN9 Character Set Differences

ISO Latin 1 ISO Latin 9

Code
Pos
Hex

Unicode
Pos
Hex Name

Unicode
Pos
Hex Name

A4 00A4 currency symbol 20AC euro sign

A6 00A6 broken bar 0160 latin capital letter s with caron

A8 00A8 diaeresis 0161 latin small letter s with caron

B4 00B4 acute accent 017D latin capital letter z with caron

B8 00B8 cedilla 017E latin small letter z with caron

BC 00BC vulgar fraction one quarter 0152 latin capital ligature oe

BD 00BD vulgar fraction one half 0153 latin small ligature oe

BE 00BE vulgar fraction three quarters 0178 latin capital letter y with diaeresis

2.1.9 Oracle NLS Character Set Names
Oracle Rdb supports the use of Oracle National Language Support (NLS)
names as aliases for existing Oracle Rdb character sets, as summarized in
Table 2–4. You can use NLS alias names anywhere a character set name can
be used.

2–14 Language and Syntax Elements

Table 2–4 Oracle NLS Character Set Names Supported as Aliases

US7ASCII ASCII

WE8DEC DEC_MCS

WE8ISO8859P1 ISOLATIN1

WE8ISO8859P1 ISOLATIN9

CL8ISO8859P5 ISOLATINCYRILLIC

AR8ISO8859P6 ISOLATINARABIC

EL8ISO8859P7 ISOLATINGREEK

IW8ISO8859P8 ISOLATINHEBREW

TH8TISASCII TACTIS

JA16VMS DEC_KANJI

JA16SJIS SHIFT_JIS

KO16KSC5601 KOREAN

ZHS16CGB231280 HANZI

ZH16BIG5 BIG5

JA16EUCFIXED KANJI

2.1.10 Character Set UNSPECIFIED
Oracle Rdb supports the use of the UNSPECIFIED character set. You can
make comparisons and assignments between text objects (columns, literals,
and so on) that have the UNSPECIFIED character set, and any other text
object regardless of the character set of the other text object.

The characteristics of the UNSPECIFIED character set are as follows:

• The character set ID is 32767.

• It can be used to specify any session or database character set, including
the identifier character set.

• It is a single-octet character set (fixed).

• It applies casing (uppercase and lowercase) only to ASCII characters.

• It contains ASCII, as follows:

The space character is the ASCII space character (0x20).

The wildcard character is the ASCII underscore (0x5f).

The string wildcard is the ASCII percent (0x25).

Language and Syntax Elements 2–15

2.1.11 Logical Names for Character Sets
You can define a logical name for a character set name. Doing so allows easy
portability of applications across national boundaries. You can use this logical
name or parameter anywhere you use a character set name in SQL. SQL
translates the logical name or parameter at compile time for precompiled SQL
and SQL module language, or at run time for dynamic SQL and interactive
SQL.

The logical name can begin with any of the following:

• RDBVMS$

• RDB$

• SQL$

Oracle Rdb recommends that you begin logical names with RDB$.

The logical name or parameter must translate to a valid character set name
found in Table 2–1.

The following example shows how to define and use a logical name for a
character set:

$ DEFINE RDB$LOCAL_CHAR_SET KANJI
$ SQL
SQL> ATTACH ’FILENAME personnel’;
SQL> CREATE DOMAIN SURNAME_DOM CHAR(20) CHARACTER SET RDB$LOCAL_CHAR_SET;
SQL> SHOW DOMAIN SURNAME_DOM
SURNAME_DOM CHAR(20)

RDB$LOCAL_CHAR_SET 10 Characters, 20 Octets
SQL>

2.2 User-Supplied Names
You must supply names (identifiers) to satisfy the syntax of SQL statements
that require user-supplied names. In statement syntax diagrams, user-supplied
names are shown in lowercase type.

User-supplied names must:

• Be no more than 31 octets (8-bit characters).

• Conform to one of the following rules:

– If the identifier character set is MCS, the name must contain only
alphanumeric characters and begin with an uppercase or lowercase
letter. Alphanumeric characters are uppercase or lowercase letters

2–16 Language and Syntax Elements

(A, a), including letters with diacritical marks (À), digits, dollar signs
($), and underscores (_).

Uppercase and lowercase letters are treated equally.

Although dollar signs are valid characters in names, to avoid conflicts
it is recommended that you do not use them.

You cannot begin a user-supplied name with a numeric character.

– If the identifier character set is other than DEC_MCS, it can contain
only a valid sequence of characters as defined by the standard for that
character set. See Section 2.1 for information about the standards for
each character set.

– The name can be a delimited identifier. A delimited identifier is a
user-supplied name enclosed in double quotation marks ("). It can
start with and contain alphanumeric characters, special characters,
control characters, and spaces. The quotation mark (") character
can be included in a delimited identifier by typing two quotation
marks together (see the following example). Trailing spaces are not
significant. See Section 2.4.2.1 for a list of special characters. The
alphabetic characters can be uppercase or lowercase. The following
example shows many variations of delimited identifiers:

SQL> SET QUOTING RULES ’SQL99
SQL> CREATE TABLE "This is a Test"
cont> ("""" CHAR(5),
cont> "_NAME" CHAR(20),
cont> " City" CHAR(20),
cont> "1st_date" DATE,
cont> "A ""B and C""" CHAR(10),
cont> "$_Amount" INT,
cont> """Test" CHAR(5)
cont>);
SQL> SHOW TABLE (COLUMN) "This is a Test";
Information for table This is a Test

Columns for table This is a Test:
Column Name Data Type Domain
----------- --------- ------
" CHAR(5)
_NAME CHAR(20)
City CHAR(20)

1st_date DATE VMS
A "B and C" CHAR(10)
$_Amount INTEGER
"Test CHAR(5)

Language and Syntax Elements 2–17

If you use a delimited identifier, SQL maintains the case of the
identifier. That is, if you enclose the identifier Employee_ID in
quotation marks ("Employee_ID"), SQL preserves the uppercase
and lowercase letters. The delimited identifiers "Employee_ID",
"EMPLOYEE_ID", and "employee_id" are distinct from each other.

You must enable ANSI/ISO SQL quoting when using delimited identifiers.
You can enable ANSI/ISO SQL quoting in the following ways:

• Use the SET QUOTING RULES and SET DIALECT ’SQL99’
statements in interactive SQL.

• Use the QUOTING RULES clause in the SQL module file to enable
ANSI/ISO SQL quoting for the compilation.

• Use the QUOTING RULES clause in a DECLARE MODULE statement
embedded in a program to be precompiled.

If you want to use a keyword as a user-supplied name, you must set the
quoting rules or dialect to SQL99 and use the delimited identifier. For
example:

SQL> SET DIALECT ’SQL99’;
SQL> -- You must use the delimited identifier to create
SQL> -- a domain named DATE. If you do not, SQL returns an
SQL> -- error message.
SQL> --
SQL> CREATE DOMAIN DATE CHAR (100);
%SQL-F-RES_WORD_AS_IDE, Keyword DATE used as an identifier
SQL> --
SQL> CREATE DOMAIN "DATE" CHAR (100);
SQL> SHOW DOMAIN "DATE"
DATE CHAR(100)
SQL> --
SQL> -- You must also use the delimited identifier around
SQL> -- the user-supplied table name if you want to use the domain
SQL> -- DATE; otherwise, the data type DATE will be referenced.
SQL> --
SQL> CREATE TABLE ABC
cont> (FIELD_1 "DATE",
cont> FIELD_2 "DATE",
cont> FIELD_3 DATE);
SQL> --
SQL> SHOW TABLE (COLUMNS) ABC;
Information for table ABC

2–18 Language and Syntax Elements

Columns for table ABC:
Column Name Data Type Domain
----------- --------- ------
FIELD_1 CHAR(100) DATE
FIELD_2 CHAR(100) DATE
FIELD_3 DATE ANSI

See the SET DIALECT Statement and the Oracle Rdb Introduction to SQL for
more information on setting dialects.

SQL uses the identifier character set as the character set for database
object names. However, because SQL interprets the names of some database
objects as file names or path names, you must use only ASCII alphanumeric
characters for the names of the following database objects:

• Database file name

• Database path name

• Snapshot files

• Storage areas

• Journal files

• Alias names

If you do not use delimited identifiers, SQL considers uppercase and lowercase
letters in database object names (other than file names) to be the same
because it converts lowercase letters to uppercase. That is, EMPLOYEE_ID,
employee_id, and Employee_ID are equivalent because SQL converts them to
EMPLOYEE_ID. SQL does not perform conversions on character sets that do
not use the concept of uppercase and lowercase characters.

Note

If you use an SQL keyword as a user-supplied name, delimit the name
with double quotation marks to differentiate the name from a keyword.
Not doing so can cause unexpected results.

Unlike some products, SQL does not convert a hyphen (which is interpreted as
a minus sign) in user-supplied names to an underscore. Instead, it considers
hyphens and underscores in such names to be distinct characters. This means
you cannot use hyphens in user-supplied names. For instance, you cannot type
EMPLOYEE-ID instead of the column name EMPLOYEE_ID.

Language and Syntax Elements 2–19

Host language parameters in embedded SQL statements are a special case in
which the SQL precompiler follows language-specific rules for user-supplied
names. The precompiler follows the convention of the host language in
distinguishing uppercase from lowercase letters, hyphens from underscores,
and valid from invalid characters.

Table 2–5 gives brief definitions of user-supplied names referred to in syntax
diagrams. Subsequent sections discuss many of these names in more detail.

Table 2–5 Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

area-name A name that designates storage area and snapshot files that are
associated with particular tables in a multifile database. You
must use ASCII alphanumeric characters for the area name.

alias A name for a particular attachment to a database. Using aliases,
programs, or interactive SQL statements allow reference to
more than one database in an environment. Aliases can, and
sometimes must, qualify database definition names to distinguish
them from another database’s definitions. An alias name is
restricted to a length of 31 characters. The name must begin
with an alphabetic character and can contain numeric characters,
the dollar sign ($), and the underscore (_) characters.

auth-id A name used for identifying schemas in a multischema database
and for checking privileges.

catalog-name A name for a database object that contains one or more schemas.
Databases that do not use the multischema option do not include
any catalogs.

collation-name The name by which the collating sequence named in the
ncs-name argument of the CREATE COLLATING SEQUENCE
statement will be known to the schema. The collation-name and
ncs-name arguments can be the same.

column-name A name that designates a column in a view or table definition.
A column name can be qualified by a table name, view name,
correlation name, or alias.

connection-name A name that designates a connection. A connection specifies an
association between the set of cursors, intermediate result tables,
and procedures in all modules of an application and the database
environment currently attached. When you execute a procedure,
it executes in the context of a connection.

(continued on next page)

2–20 Language and Syntax Elements

Table 2–5 (Cont.) Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

constraint-name1 A name that designates a constraint. A constraint specifies a
condition that restricts the values stored in tables. When you
insert and update column values, SQL checks the values against
the conditions specified by the constraint. The insert or update
statement fails if a value violates the constraint.

correlation-name A temporary name that identifies a result table to SQL. A result
table is a temporary set of rows and columns created by an
SQL statement for a data manipulation operation. Correlation
names qualify column names and distinguish between columns of
different result tables, even if the columns have the same name.

currency-char Specifies the currency indicator to be displayed in output.

cursor-name A name that designates a cursor. A cursor identifies rows of a
result table for processing by a program.

date-number Specifies the input and display format for date values.

You must enter a number for the date-number argument. This
number corresponds to numbers in the date format logical names
listed in the OpenVMS run-time library documentation.

digit-sep-char Changes the output that displays the digit separator to the
specified character. The digit separator is the symbol that
separates groups of 3 digits in values greater than 999. For
example, the comma is the digit separator in the number 1,000.

domain-name1 A name that designates a domain. A domain definition
restricts the set of values that a table column can have by
associating a data type with a domain name, and allows optional
formatting and collating clauses. Column definitions in tables
and parameter declarations in SQL module language procedures
can name a domain instead of specifying a data type.

external-routine-
name1

A name that you assign to an external function or external
procedure, which resides as a schema object in Oracle Rdb.

function-name1 A name that designates a stored function within a stored module.
A stored function can only contain IN parameter declarations.
When you use a value expression to call a stored function, you
identify the function by its stored function name.

1You can qualify this object with an alias. In a multischema database, you can qualify this object
with an alias, catalog name, and a schema name. To qualify an object, you must precede it with
the qualifier and a period (.).

(continued on next page)

Language and Syntax Elements 2–21

Table 2–5 (Cont.) Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

file-spec A full or partial file specification that designates the source of
data definitions and the location of database files. You must use
ASCII alphanumeric characters for the file specification name.
You can use a logical name in place of the file specification.

index-name1 A name that designates an index.

language-name The language to be used for translation of month names and
abbreviations in date and time input and display. The language-
name argument also determines the translation of other
language-dependent text, such as the translation for the date
literals YESTERDAY, TODAY, and TOMORROW. Valid entries
for the language-name argument are the names of the collating
sequences used by the National Character Set (NCS) utility.

library-name The name of an NCS library other than the default. The default
(ASCII) NCS library is SYS$LIBRARY:NCS$LIBRARY.

map-name A name that designates a storage map that controls which rows
and columns of a table are stored in which storage areas in a
multifile database.

1You can qualify this object with an alias. In a multischema database, you can qualify this object
with an alias, catalog name, and a schema name. To qualify an object, you must precede it with
the qualifier and a period (.).

(continued on next page)

2–22 Language and Syntax Elements

Table 2–5 (Cont.) Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

module-name The name of the module.

• For nonstored modules

A name that you assign to a nonstored module. Nonstored
modules can contain simple or compound statement
procedures that are called by host language programs.
Unlike stored modules, nonstored modules reside outside an
Oracle Rdb database in an SQL module file. If you omit the
module-name, SQL uses SQL_MODULE by default.

• For stored modules

A name that you assign to a module that resides as a
schema object in an Oracle Rdb database. Stored modules
can contain compound statement procedures only, which
a host language program calls from a simple statement
procedure using the CALL statement. When you define a
stored module with the CREATE MODULE statement, you
also define its functions or procedures, which are called
stored functions or stored procedures. You must specify a
module name; otherwise, SQL returns an exception.

ncs-name The name of a collating sequence in the default NCS library,
SYS$LIBRARY:NCS$LIBRARY, or in the NCS library specified
by the argument library-name. The collating sequence can be
either one of the predefined NCS collating sequences or one that
you defined yourself using the NCS collating sequences.

parameter A variable declared in a host language program that is associated
with an SQL statement, including:

• host language variables in precompiled programs

• formal parameters in SQL module procedures

• parameter markers in dynamic SQL

path-name A full or relative data dictionary path name that specifies the
source of schema definitions. You must use ASCII alphanumeric
characters for the path name.

(continued on next page)

Language and Syntax Elements 2–23

Table 2–5 (Cont.) Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

procedure-name A name that designates a stored or nonstored procedure within a
stored or nonstored module:

• Stored procedures

Can contain zero or more parameter declarations and a
compound statement. When you use the CALL statement
to call a stored procedure, you identify the procedure by its
stored procedure name.

• Nonstored procedures

Can contain one or more parameter declarations and a
simple or compound statement. Nonstored procedure names
are used in host language calls to the SQL module.

profile-name1 A name that designates a profile.

radix-char Changes the output that displays the radix point to the specified
character. The radix point is the symbol that separates units
from decimal fractions. For example, in the number 98.6, the
period is the radix point.

role-name1 A name that designates a role.

schema-name A name that designates a schema. A schema specifies a group of
data definitions within a database. In a multischema database,
one or more schemas are grouped together within catalogs.

sequence-name1 A name that designates a sequence.

statement-name A name that designates a prepared SQL statement. A prepared
statement is one generated dynamically during the execution of a
program.

synonym-name1 A name that designates a synonym.

table-name1 A name that designates a table in which data is stored. A table
name can qualify a column name.

time-number Specifies the input and display format for time values.

You must enter a number for the time-number argument. This
number corresponds to numbers in the time format logical names
listed in the OpenVMS run-time library documentation.

1You can qualify this object with an alias. In a multischema database, you can qualify this object
with an alias, catalog name, and a schema name. To qualify an object, you must precede it with
the qualifier and a period (.).

(continued on next page)

2–24 Language and Syntax Elements

Table 2–5 (Cont.) Summary of User-Supplied Names Used in SQL

User-Supplied
Name Description

trigger-name1 A name that designates a trigger definition. A trigger definition
causes one or more actions to occur when a particular type of
update operation is performed on the table. A trigger name must
be unique within a schema.

user-name1 A name that designates a user.

view-name1 A name that designates a view. A view is a table whose data is
not physically stored but refers to rows, columns, or both, stored
in other tables. A view name can qualify a column name.

1You can qualify this object with an alias. In a multischema database, you can qualify this object
with an alias, catalog name, and a schema name. To qualify an object, you must precede it with
the qualifier and a period (.).

2.2.1 Aliases
An alias is a name for a particular attachment to a database. Explicitly
specifying an alias lets your program or interactive SQL statements refer to
more than one database.

Once you specified the alias, you must use it when referring to the database
in subsequent SQL statements (unless those statements are within a CREATE
DATABASE statement). You must use an alias when you declare more than
one database so that SQL knows the database to which your statements refer.
When you issue an ATTACH, CONNECT, CREATE DATABASE, CREATE
DOMAIN, CREATE TABLE, DECLARE ALIAS, GRANT, GRANT (ANSI-style),
IMPORT, REVOKE, or SET TRANSACTION statement, you can specify an
alias in addition to a file specification or a repository path name.

SQL allows you to specify an alias that declares the database as the default
database. Specifying a default database means that subsequent statements
that refer to the default database during the database attachment do not need
to use an alias.

In the SQL module language, the alias specified in the module header
designates the default database. In precompiled SQL programs and in
interactive SQL, the special alias RDB$DBHANDLE designates the default
database if you are not using multischema naming. To use an alias with a
multischema database, you must use the QUOTING RULES SQL99 clause
in the module header, and you must use the delimited identifiers described
in Section 2.2.11. In all environments, omitting an explicit alias is the same
as specifying the alias that designates the default database. If you do not

Language and Syntax Elements 2–25

declare an alias, SQL uses the database file specified by the logical name
SQL$DATABASE as the default database for module compilation.

If you declare an alias that designates a database other than the default
database, you must use that alias to qualify names of any database objects
(tables, views, indexes, domains, storage maps, storage areas) to which you
refer in SQL statements. If you omit the alias, SQL assumes the database
object is part of the default database. If there is no default database and you
omit the alias, SQL generates an error. See Section 2.2.19 for an example of
qualifying a table name with an alias.

The following example shows how you can specify aliases in ATTACH
statements. One of the databases is empty and will be used to make temporary
copies of tables in the personnel database. Use the SHOW DATABASE
statement to see the database settings.

SQL> -- Use the alias empty for the empty database.
SQL> --
SQL> ATTACH ’ALIAS empty PATHNAME temp’;
SQL> --
SQL> -- Use the alias pers for personnel.
SQL> --
SQL> ATTACH ’ALIAS pers PATHNAME personnel’;
SQL> --
SQL> -- You must use the alias to qualify table names after you declare
SQL> -- an alias. Omitting the alias generates an error.
SQL> --
SQL> SELECT * FROM EMPLOYEES;
%SQL-F-NODEFDB, There is no default database
SQL> SELECT * FROM PERS.EMPLOYEES;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL

ADDRESS_DATA_1 ADDRESS_DATA_2 CITY
STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE

00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 28-Mar-1947 1
.
.
.

2.2.2 Authorization Identifiers
SQL uses an authorization identifier in a stored or nonstored module to
convey to Oracle Rdb the concept of a user. These modules can be either
definer’s rights or invoker’s rights.

2–26 Language and Syntax Elements

2.2.2.1 Authorization Identifiers and Stored Modules
A stored module resides in the database as an object. You can store modules
and their procedures and functions with the CREATE MODULE statement.

The authorization identifier, specified by using the AUTHORIZATION clause,
enables Oracle Rdb to identify the user under whom the module executes.

When you specify an authorization identifier in the definition of a stored
module, that stored module is called a definer’s rights module. This type
of module enables any user who has EXECUTE privilege on the module
to execute any of the module’s routines without privileges on any of the
underlying schema objects that the routine references. The routines execute
under the rights identifier of the module definer, not the rights identifier of
the person executing the routine. This ability to allow users access to schema
objects through a call to a stored routine without having direct access to those
schema objects is a key benefit of stored modules.

In contrast, when you omit the AUTHORIZATION clause in the definition of
a stored module, that stored module is called an invoker’s rights module.
In this type of module, users who have EXECUTE privilege on a particular
module must also have privileges to all the underlying schema objects
associated with any of the routines in this module that they want to execute.

The following examples relate to stored modules and procedures. Authorization
and CURRENT_USER are handled the same for both types of stored routines.

Consider the following stored module definition, Module M1 with Procedure P1
and Authorization Brown. For example:

CREATE MODULE M1
LANGUAGE SQL
AUTHORIZATION BROWN

PROCEDURE P1 ();
BEGIN
TRACE CURRENT_USER;
CALL P2 ();
END;

END MODULE;

As you can see in the preceding example, P1 calls another stored procedure,
P2. Procedure P2 is defined in Module M2 as the following example shows:

Language and Syntax Elements 2–27

CREATE MODULE M2
LANGUAGE SQL
-- no authorization
PROCEDURE P2 ();
BEGIN
TRACE CURRENT_USER;
CALL P3 ();
END;

END MODULE;

Procedure P2 calls another procedure, P3, from Module M3, which is shown in
the following example:

CREATE MODULE M3
LANGUAGE SQL
-- no authorization
PROCEDURE P3 ();
BEGIN
TRACE CURRENT_USER;
.
.
.
END;

END MODULE;

In each procedure you can trace the CURRENT_USER.

Figure 2–1 is a graphic representation of what happens when users invoke
these stored procedures.

2–28 Language and Syntax Elements

Figure 2–1 Authorization Identifiers and Stored Modules

Process M1

Process M2

Smith invokes M1

Jones invokes M1

Smith invokes M2

Jones invokes M2

Smith invokes M3

Jones invokes M3

 = invocation error
1

2

3

4

Is user
granted EXECUTE
privileges on M3?

Is user

Is user

granted EXECUTE

granted EXECUTE

privileges on M2?

privileges on M1?

M2
P2
Authorization = none

M3
P3
Authorization = none

M1
P1
Authorization = Brown

Process M3

Error

Error

Error

Yes

Yes

Yes

No

No

No

2

4

1

3

NU−3637A−RA

Language and Syntax Elements 2–29

Assume the following:

• Smith is granted the EXECUTE privilege on Module M1; but not on M2 or
on M3.

• Brown is granted the EXECUTE privilege on Modules M1, M2, and M3.

• Jones is granted the EXECUTE privilege on Modules M1 and M2.

When P1 is executed, CURRENT_USER always returns Brown as defined by
the AUTHORIZATION clause in Module M1. When P2 or P3 are executed, the
CURRENT_USER is either:

• Inherited from the calling routines AUTHORIZATION clause, or

• The CURRENT_USER of the calling routine if no authorization was
specified

When there is no AUTHORIZATION clause for the first calling routine, then
CURRENT_USER is inherited from the SESSION_USER.

The following list explains the numbered callouts in Figure 2–1.

! When Smith and Jones invoke P1, the routine executes under the
authorization of Brown. P1 then calls P2. Brown is granted access to
Module M2 and can, therefore, execute P2 giving Smith and Jones implicit
access to P2. When referenced, CURRENT_USER in P2 inherits the
current user of the calling routine, which is Brown.

" When Smith tries to execute Procedure P2 directly, an error is returned
because Smith does not have EXECUTE privilege on Module M2.

When Jones executes P2 directly, CURRENT_USER is displayed as Jones
(inherited from SESSION_USER because Module M2 was defined without
an authorization identifier). P2 can have a different CURRENT_USER
depending on how it is invoked.

From a security point of view, when Jones executes P2 directly, Jones must
have EXECUTE privilege on Module M2. However, when Jones executes
P2 using a call from P1, then Brown must have EXECUTE privilege on
Module M2, and Jones must have EXECUTE privilege on Module M1.

$ When Smith and Jones try to execute Procedure P3 directly, an error is
returned because they do not have EXECUTE privileges on Module M3.

2–30 Language and Syntax Elements

2.2.2.2 Authorization Identifiers and Nonstored Modules
A nonstored module resides outside the database in an SQL module file.

The AUTHORIZATION clause specifies the authorization identifier for the
module. If you omit the authorization identifier, SQL selects the user name
of the user compiling the module as the default authorization. Thus, if you
use the RIGHTS clause, SQL compares the user name of the person who
executes a module with the authorization identifier with which the module was
compiled and prevents any user other than the one who compiled that module
from invoking that module. When you use the RIGHTS clause, SQL bases
privilege checking on the default authorization identifier in compliance with
the ANSI/ISO standard.

2.2.3 Catalog Names
If you include the MULTISCHEMA IS ON clause in your CREATE DATABASE
statement, you can store your metadata in multiple schemas. A database with
multiple schemas must organize them within catalogs. A catalog is a group of
schemas within one database.

You name catalogs in CREATE CATALOG or CREATE DATABASE statements.
You can also use catalog names to qualify the names of other database
elements such as schemas, tables, and views.

Note

In syntax diagrams, the column-name syntax element refers to either
the qualified or unqualified form of the name given to the catalog in the
CREATE statement. That is, in syntax diagrams, the catalog-name is
always defined as:
catalog-name =

<name-of-catalog>

" <alias>.<name-of-catalog> "

In each multischema database, SQL creates a catalog named RDB$CATALOG.
SQL stores all schemas in RDB$CATALOG by default. A multischema
database must contain at least one catalog, although you can create more
than one catalog for each database. To store a schema in a catalog other than
RDB$CATALOG, qualify the schema name with the other catalog’s name in the
CREATE SCHEMA statement, or use the SET CATALOG statement to change
the default catalog before issuing a CREATE SCHEMA statement.

Language and Syntax Elements 2–31

In the following example, SQL puts the new schema PACIFIC_NORTHWEST
into the default catalog, RDB$CATALOG. To create a schema in the EAST_
COAST catalog, you must use the catalog name EAST_COAST to qualify the
schema NEW_ENGLAND. If you change the default catalog to EAST_COAST,
you must qualify names of schemas in other catalogs, such as RDB$CATALOG.

SQL> ATTACH ’FILENAME corporate_data’;
SQL> CREATE SCHEMA PACIFIC_NORTHWEST;
SQL> CREATE CATALOG EAST_COAST;
SQL> CREATE SCHEMA EAST_COAST.NEW_ENGLAND;
SQL> SHOW SCHEMAS;
Schemas in database with filename corporate_data

ADMINISTRATION.ACCOUNTING
ADMINISTRATION.PERSONNEL
ADMINISTRATION.RECRUITING
EAST_COAST.NEW_ENGLAND
PACIFIC_NORTHWEST
RDB$SCHEMA

SQL> SET CATALOG ’EAST_COAST’;
SQL> SHOW SCHEMAS;
Schemas in database with filename corporate_data

ADMINISTRATION.ACCOUNTING
ADMINISTRATION.PERSONNEL
ADMINISTRATION.RECRUITING
NEW_ENGLAND
RDB$CATALOG.PACIFIC_NORTHWEST
RDB$CATALOG.RDB$SCHEMA

Within a database, tables in different catalogs can be used in a single SQL
statement; tables in catalogs in different databases cannot. If you omit the
catalog name when specifying an object in a multischema database, SQL uses
the name of the current default catalog.

2.2.4 Column Names
You name columns in CREATE TABLE and ALTER TABLE statements. In
other SQL statements, the names you give to columns in CREATE and ALTER
statements can be qualified by table names, view names, or correlation names.

Note

In syntax diagrams, the column-name syntax element refers to either
the qualified or unqualified form of the name given to the column in
the CREATE TABLE or ALTER TABLE statement. That is, in syntax
diagrams, column-name is always defined as:

2–32 Language and Syntax Elements

column-name =

<name-of-column>
<table-name> .
<view-name>
<correlation-name>

The only time you must qualify column names is when they are ambiguous.
Joining a table with itself (see Section 2.2.4.1 for an example) and joining two
tables with common column names (see the following example) are two cases
that require qualified column names. Also, if you have a parameter without a
colon with the same name as a column, you need to qualify references to that
column.

However, you always have the option of qualifying column names. In complex
statements, such qualifiers often make the statements more readable. (You
should always qualify column names in module language and precompiled
programs. Otherwise, you will need to revise the program and qualify the
column names if changes make the unqualified column ambiguous.)

There are two ways to qualify column names:

• With the name of the table or view to which the column belongs.

• With an arbitrary correlation name you specify. You must use correlation
names instead of table names or view names when you join a table with
itself. Once you specify a correlation name for a table, you can no longer
use the table name or view name to qualify column names.

The column-name qualifier (whether a table name or a view name) can itself
be qualified by an alias.

The remainder of this section gives examples of qualifying column names
with table names or view names. See Section 2.2.4.1 for examples of using
correlation names.

The following example illustrates optional qualification of column names.
The query does not join tables because it retrieves column values from
the EMPLOYEES table only. Instead, it nests a select expression in the
predicate of another statement to list the employees who work in the marketing
department. The query does not require qualifiers on the column names but
uses them to clearly distinguish to which table the EMPLOYEE_ID column
refers.

Language and Syntax Elements 2–33

SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEES.EMPLOYEE_ID IN
cont> (SELECT JOB_HISTORY.EMPLOYEE_ID
cont> FROM JOB_HISTORY
cont> WHERE JOB_END IS NULL
cont> AND DEPARTMENT_CODE = ’MKTG’);
EMPLOYEE_ID FIRST_NAME LAST_NAME
00197 Chris Danzig
00218 Lawrence Hall
00354 Paul Belliveau
3 rows selected

The following example retrieves the same information as the previous example
but illustrates a case when you must qualify a column name, EMPLOYEE_ID,
because it is ambiguous. The SELECT statement joins the EMPLOYEES
and JOB_HISTORY tables to list the employees who work in the marketing
department. Because both EMPLOYEES and JOB_HISTORY have a column
called EMPLOYEE_ID, that column must be qualified.

SQL> SELECT EMPLOYEES.EMPLOYEE_ID,
cont> FIRST_NAME, LAST_NAME
cont> FROM EMPLOYEES, JOB_HISTORY
cont> WHERE JOB_END IS NULL
cont> AND
cont> DEPARTMENT_CODE = ’MKTG’
cont> AND
cont> JOB_HISTORY.EMPLOYEE_ID = EMPLOYEES.EMPLOYEE_ID;
EMPLOYEES.EMPLOYEE_ID EMPLOYEES.FIRST_NAME EMPLOYEES.LAST_NAME
00197 Chris Danzig
00218 Lawrence Hall
00354 Paul Belliveau
3 rows selected

2.2.4.1 Correlation Names
In addition to qualifying column names with table names or view names, you
can qualify column names with correlation names. Correlation names are
analogous to aliases, but they refer to tables instead of databases. Just as
aliases provide temporary names for databases to qualify ambiguous table
names, correlation names give temporary names to tables to qualify ambiguous
column names.

Specify a correlation name after a table name within the FROM clause of a
select expression or DELETE statement, or in an UPDATE statement. Use
any valid name that has not already been used in the FROM clause either as a
correlation name or as a table name without a correlation name.

2–34 Language and Syntax Elements

You must use correlation names to qualify column names in statements that
join a table with itself. As with table names and view names, however, you can
always specify a correlation name for clarity (Section 2.2.4.2 shows an example
of this within an outer reference).

The following example requires the use of a correlation name. It joins the
JOBS table with itself to find any wage class 2 jobs whose maximum salary
overlaps the minimum salary of wage class 4 jobs.

The statement specifies the correlation names STAFF and MGR in the FROM
clause. Those correlation names are the only way to distinguish between
column names in the result table that joins JOBS with itself.

SQL> SELECT STAFF.JOB_CODE,
cont> STAFF.MAXIMUM_SALARY,
cont> MGR.JOB_CODE,
cont> MGR.MINIMUM_SALARY
cont> FROM JOBS AS STAFF,
cont> JOBS AS MGR
cont> WHERE MGR.WAGE_CLASS = ’4’
cont> AND
cont> STAFF.WAGE_CLASS = ’2’
cont> AND
cont> STAFF.MAXIMUM_SALARY > MGR.MINIMUM_SALARY;
STAFF.JOB_CODE STAFF.MAXIMUM_SALARY MGR.JOB_CODE MGR.MINIMUM_SALARY
CLRK 20000.00 APGM 15000.00
1 row selected

The example shows that the maximum salary for a clerk is greater than the
minimum salary for an associate programmer. Those two are the only jobs
where the maximum pay for a wage class 2 job exceeds the minimum for a
wage class 4 job.

In the absence of an explicit correlation name, SQL considers table names
or view names as default correlation names, even if you do not use the table
names or view names to explicitly qualify column names in the select list.
Because of this, SQL generates an error if you name the same table twice in
the FROM clause without specifying a correlation name.

SELECT JOB_CODE, MINIMUM_SALARY FROM JOBS, JOBS;
%SQL-F-CONVARDEF, Column qualifier JOBS is already defined

In this example, because no correlation name was specified, SQL by default
considers JOBS as the qualifier for the first occurrence of the JOBS table.
When SQL encounters the second occurrence of JOBS, also without a
correlation name, it generates an error because it uses the second JOBS as
a second, ambiguous default correlation name. To prevent the error, specify a
correlation name for either occurrence of JOBS in the FROM clause, and then
qualify column names in the select list.

Language and Syntax Elements 2–35

Once you specify a correlation name for a table, you can no longer use the
table name to qualify column names. The following example specifies E as
a correlation name for the EMPLOYEES table, which means EMPLOYEES
cannot be used as a qualifier for the EMPLOYEE_ID column name:

SELECT * FROM EMPLOYEES E WHERE EMPLOYEES.EMPLOYEE_ID = ’00169’;
%SQL-F-CONVARUND, Column qualifier EMPLOYEES is not defined

2.2.4.2 Outer References
You may have to qualify column names in an outer reference. An outer
reference is a reference within a subquery to a table specified in an outer
query that contains the subquery. An outer reference is also called a correlated
reference.

For example, the previous example that retrieved the names of employees
who worked in the marketing department can be reformulated to use an outer
reference.

SQL> SELECT FIRST_NAME, --
cont> LAST_NAME --
cont> FROM EMPLOYEES --
cont> WHERE ’MKTG’ IN --
cont> (SELECT DEPARTMENT_CODE -- -- Outer
cont> FROM JOB_HISTORY -- -- Query
cont> WHERE JOB_END IS NULL -- Sub- --
cont> AND -- query --
cont> EMPLOYEE_ID =
cont> EMPLOYEES.EMPLOYEE_ID) -- --
cont> -- ---------------------
cont> -- outer reference
cont> ;
FIRST_NAME LAST_NAME
Chris Danzig
Lawrence Hall
Paul Belliveau
3 rows selected

If the outer reference to EMPLOYEE_ID in this example were not qualified
by the table name EMPLOYEES, it would refer to the EMPLOYEE_ID
column in the subquery, not the outer query. The predicate EMPLOYEE_
ID = EMPLOYEE_ID is true for all values of EMPLOYEE_ID that are not
null, so the statement would not generate an error, but would give unexpected
results. Instead of the three marketing employees, it would select all rows of
the EMPLOYEES table with values in the EMPLOYEE_ID column that were
not null.

2–36 Language and Syntax Elements

Although the outer reference is contained within a subquery, it receives its
value from an outer query. Because of this, the subquery must be evaluated
once for each value that the outer reference receives from the outer query. It is
this characteristic that defines an outer reference.

In the previous example, the outer reference in the last line of the
statement EMPLOYEES.EMPLOYEE_ID gets a different value for each
row of the table EMPLOYEES. SQL evaluates the subquery containing
EMPLOYEES.EMPLOYEE_ID once for every value of EMPLOYEE_ID in
the table EMPLOYEES.

To make the correlation between the reference in the subquery and the table
in the outer query clearer, you can specify correlation names, such as MAIN_
QUERY and SUBQUERY in the following example:

SQL> SELECT MAIN_QUERY.FIRST_NAME,
cont> MAIN_QUERY.LAST_NAME
cont> FROM EMPLOYEES MAIN_QUERY
cont> WHERE ’MKTG’ IN
cont> (SELECT SUBQUERY.DEPARTMENT_CODE
cont> FROM JOB_HISTORY SUBQUERY
cont> WHERE SUBQUERY.JOB_END IS NULL
cont> AND
cont> SUBQUERY.EMPLOYEE_ID = MAIN_QUERY.EMPLOYEE_ID);
FIRST_NAME LAST_NAME
Chris Danzig
Lawrence Hall
Paul Belliveau
3 rows selected

2.2.5 Connection Names
When your application attaches to one or more databases, SQL associates
the databases with a set of aliases (database handles). In CONNECT,
DISCONNECT, or SET CONNECT statements, you refer to this association as
the connection name. You can specify the connection name as a parameter
marker from dynamic SQL, a host language variable from a precompiled SQL
program, a parameter from an SQL module language module, or a string
literal.

The set of databases that you can attach or detach as one unit is called the
database environment. Within an application, all of the databases declared
in all the modules form the default database environment for that application
at run time. For more information about connections, see the CONNECT
Statement.

Language and Syntax Elements 2–37

2.2.6 Constraint Names
A constraint defines a condition that restricts the values that can be stored
in a table. When you insert and update column values, the constraint checks
the values against the conditions specified by the constraint. If a value violates
the constraint, SQL generates an error message and the statement fails (either
when the INSERT, UPDATE, or DELETE statement executes, or when the
next COMMIT statement executes depending on when SQL evaluates the
constraint).

You specify constraints in CREATE and ALTER TABLE statements.
Optionally, you supply a name for the constraints following the CONSTRAINT
keyword.

2.2.7 Cursor Names
Cursors provide access to individual rows of a result table. A result table
is a temporary collection of columns and rows from one or more tables or
views. For cursors, the result table is specified by the select expression in the
DECLARE CURSOR statement.

Unlike other result tables, the result table for a cursor can exist throughout
execution of more than one statement. Host language programs require cursors
because programs must perform operations one row at a time, and therefore
can execute statements more than once to process an entire result table.

You name the result table for a cursor in the DECLARE CURSOR statement
and refer to that name in OPEN, CLOSE, FETCH, UPDATE, and DELETE
statements. You cannot qualify cursor names.

2.2.8 Database Names
A database consists of physical data storage characteristics, such as a root
file and storage area specifications; metadata definitions, such as tables and
domains; and user data.

By default, a database contains a single schema and no catalogs. If you specify
the multischema attribute when creating your database, you can group the
data definitions within one or more schemas within one or more catalogs.
See the CREATE DATABASE Statement for information on how to create a
multischema database.

When you create a database, you name it by specifying a file name and an
optional repository path name in the CREATE DATABASE statement. You can
supply a complete file specification, a partial file specification, or use system-
supplied default values. You must use ASCII alphanumeric characters for the
database name.

2–38 Language and Syntax Elements

To perform operations on a database, the database name is referenced through
an attachment to that database called an alias. When you first refer to a
database in SQL, you must indicate the source of data definitions for the
database and the location of database files by declaring an alias. You can
declare an alias using one of three statements:

• ATTACH

• CONNECT

• DECLARE ALIAS

Choose a statement based on the interface that you are using (interactive SQL,
SQL module language, or precompiled SQL) and your purpose (declaring a new
alias or overriding the association between an alias and a database name).
For details, see the statements in Chapter 6 and Chapter 7. More information
about aliases appears in Section 2.2.1.

There are two ways to identify the source of data definitions:

• With a file specification

• With a repository path name (if the repository is installed on the system)

The following sections describe these methods in more detail.

2.2.8.1 Oracle Rdb Attach Specifications
When you first create a database, you give file specifications for the files
that contain all database definitions (metadata) and user data stored in
the database. You must use ASCII alphanumeric characters for the file
specification name.

You can also use a file specification whenever you refer to a database in
the CONNECT and DECLARE ALIAS statements, although Oracle Rdb
recommends that you always use a repository path name when the repository
is installed. See the Usage Notes in the DECLARE ALIAS Statement and the
CONNECT Statement for more information.

A full file specification includes:

• Network node name

• Device name

• Directory name or list

• File name

• File extension

• File version number

Language and Syntax Elements 2–39

Note that if you are specifying a database name for a remote database, all
logical names/file specifications referenced will be evaluated on the remote
node, not on the local node. Therefore, the necessary logical names/file
specifications must exist on the remote node.

For example, on OpenVMS a full file specification is:

SPEEDY::DISK_DEPT3:[LICENSES]APPLICANTS.RDB;18

If it can, the system supplies default values for omitted fields in the file
specification.

When you use a CREATE DATABASE, ALTER DATABASE, DROP
DATABASE, ATTACH, or DECLARE ALIAS statement, you should not include
a file extension or version number in the file specification. The file specification
is used to create other files with different file extensions. For example, on
OpenVMS, when you create a single-file database, Oracle Rdb creates two files:
one with an .rdb file extension and one with an .snp file extension. Specifying
an extension or version can cause mismatches between the two files.

You can also use logical names instead of full or partial file specifications in an
ATTACH or a DECLARE ALIAS statement.

If you are using a remote database (that is, a database on another node in a
network), you must be sure to include the node name in the file specification.
OpenVMS allows remote access in three ways: through clustering, via DECnet,
and via TCP/IP. Oracle Rdb supports all three methods. The format of a node
name can be different depending on which method is used. If the remote
node is within the same cluster or if the connection is via DECnet, the node
name is the OpenVMS node name of the remote system. For TCP/IP, the node
name can be a TCP/IP nodename, including TCP/IP domain qualifiers (for
example, MYSYS.MYDOM.MYNET), or even just the IP address (for example,
10.20.30.40). Additionally, DECnet node names can be TCP/IP node names if
DECnet uses TCP/IP as the transport layer. For more information on node
names using the various remote connection connections, see the Oracle Rdb
Guide to SQL Programming.

Because access to a remote database requires use of another computer system,
your process or program must log in to that system and authenticate the user.
To access databases on remote nodes, you can explicitly provide user name and
password information in SQL statements that attach to the database and in
configuration parameters. In addition, you can pass the information to an SQL
module language or precompiled SQL program by using a parameter and a
new command line qualifier.

2–40 Language and Syntax Elements

When you use Oracle Rdb for OpenVMS to attach to a database in the same
cluster, you do not have to explicitly specify the user name and password.
Oracle Rdb implicitly authenticates the user whenever the user attaches to a
database.

However, when you use Oracle Rdb for OpenVMS to attach to a database on a
remote node, even if that node is an OpenVMS node, you must use one of the
methods provided by Oracle Rdb to access the database.

You can use one of the following methods to attach to a database on a
OpenVMS node:

• You can explicitly provide the user name and password in the USER and
USING clauses of the ATTACH statement.

To attach to the mf_personnel database on a remote node, you can use the
USER and USING clauses in the ATTACH statement, as the following
example shows:

SQL> ATTACH ’FILENAME REMNOD::DISK1:[DIR]MF_PERSONNEL
cont> USER ’’heleng’’ USING ’’MYpassword’’’;
SQL>

You must enclose the user name and password in single quotation marks,
but because the literal in this example is within the quoted attach-string,
you must surround the user name and password with two sets of single
quotation marks.

• Explicitly provide the user name and password in the configuration file
RDB$CLIENT_DEFAULTS.DAT. The following example shows how to
include the information in the configuration file:

! User name to be used for authentication
SQL_USERNAME HELENG

! Password to be used for authentication
SQL_PASSWORD MYPASSWORD

• You can also use one of the following methods to attach to a database on a
remote OpenVMS node:

Use a proxy account on the remote system. This approach eliminates
the need to include a user name and password in an ATTACH
statement in a command file or in a DECLARE ALIAS statement
in a host language program. The proxy account need not have
the same privileges as the local account and is the recommended
method of remote access. You must grant database privilege to the
RDB$REMOTE account created by the Oracle Rdb installation. For

Language and Syntax Elements 2–41

more information about proxy accounts, see the Oracle Rdb Guide to
SQL Programming. Proxy accounts are not supported for TCP/IP.

Embed a user name and password in the file specification (this
method is not supported for TCP/IP). The following example shows
the ATTACH statement for access to the remote system REMNOD:

SQL> ATTACH ’FILENAME REMNOD"JULIA OPEN_UP"::APPLICANTS.RDB’;

Here, REMNOD is the remote node name, JULIA is the user name
for the account in which the database is defined, and OPEN_UP is the
password for that account. No disk or directory specification is required
if the database files are in Julia’s login directory. DECnet software
runs the login process for the user named JULIA and uses Julia’s disk
and login directory automatically.

If you do not specify the USER and USING clause in SQL statements, Oracle
Rdb uses the information in the configuration file. If the SQL_USERNAME
and SQL_PASSWORD parameters are not specified in the configuration file,
Oracle Rdb checks for the existence of proxy accounts.

2.2.8.2 Repository Path Names
Unless you use the PATHNAME argument in the CREATE DATABASE
statement, SQL does not use the repository to store data definitions.

If you specify the PATHNAME argument when you first create a database, SQL
creates a path name that contains copies of data definitions for the database.

Because SQL treats a path name like a string literal, you must enclose a path
name in single quotation marks. You must use ASCII alphanumeric characters
for the repository path name.

When you issue an ATTACH or a DECLARE ALIAS statement, you can either
specify the repository path name for that database (which in turn points to the
physical database files) or directly name the physical database file specification.

If you do not use the PATHNAME argument in the CREATE DATABASE
statement, you cannot specify a path name in ATTACH or DECLARE ALIAS
statements for that database unless you first issue an INTEGRATE statement.
Oracle Rdb recommends that you always use a repository path name in
CREATE DATABASE, ATTACH, and DECLARE ALIAS statements, and
that you use the DICTIONARY IS REQUIRED clause to ensure that the two
copies are the same.

A repository path name can be a:

• Full path name, such as CDD$TOP.ELLINGSWORTH.SQL.PERSONNEL

• Relative path name

2–42 Language and Syntax Elements

A relative path name consists of the portion of the full path name
that follows the current default repository node. For example, assume
that you used the SET DICTIONARY command to set the current
repository directory to CDD$TOP.ELLINGSWORTH.SQL. Now you can
use the relative path name PERSONNEL in place of the full path name
CDD$TOP.ELLINGSWORTH.SQL.PERSONNEL. By default, SQL sets the
current repository node to the path name defined by the CDD$DEFAULT
logical name. See the SET Statement for the description of the SET
DICTIONARY statement. See also Using Oracle CDD/Repository on
OpenVMS Systems for more detail on repository path names.

• Logical name for a full or relative path name

Some Oracle Rdb features are not fully supported by all versions of the
repository. If you attach by path name and attempt to create, modify, or
delete objects not fully supported by the repository, you may receive an error
or informational message. See the Oracle Rdb Release Notes for information
about compatibility of Oracle Rdb features with the different versions of the
repository.

2.2.9 Domain Names
A domain is the set of values that a table column can have.

A domain definition restricts the set of values that a table column can have by
associating a data type with a domain name, and allows optional formatting
and collating clauses. The CREATE and ALTER TABLE statements refer to
domain names in column definitions. The domain name must be unique among
domain names in the schema.

You can use a domain when defining columns in multiple tables. Once you
have defined a domain, use the CREATE or ALTER TABLE statement to define
a column based on the domain definition.

You can qualify the domain name with the schema name (when the domain
belongs to a multischema database) or with the alias.

In general, you should use domains when you create tables. Using domains:

• Ensures that similar columns in multiple tables comply to one standard.
For example, if you define the columns using the domain ID_DOM, the
data type for all these columns is CHAR(5).

• Allows you to change the data type for all columns defined using a domain
by changing the domain itself. For example, if you want to change the data
type for POSTAL_CODE_DOM from CHAR(5) to CHAR(10), you only need
to alter the data type for POSTAL_CODE_DOM. You do not have to alter

Language and Syntax Elements 2–43

the data type for the column POSTAL_CODE in the tables COLLEGES
and EMPLOYEES.

You might not want to use domains when you create tables if:

• You are creating intermediate result tables. It takes time to plan what the
domains are in the database and to define them. Intermediate result tables
might not warrant this effort.

Note

In syntax diagrams, the domain-name syntax element refers to either
the qualified or unqualified form of the name given to the domain in
the CREATE DOMAIN statement.

domain-name =

<name-of-domain>
<schema-name> .
<alias>

2.2.10 Index Names
You name indexes in the CREATE INDEX statement. In CREATE INDEX
and other SQL statements, the names you give to indexes can be qualified by
authorization identifiers.

Note

In syntax diagrams, the index-name syntax element refers to either
the qualified or unqualified form of the name given to the index in the
CREATE INDEX statement.
index-name =

<name-of-index>
<schema-name> .
<alias>

2–44 Language and Syntax Elements

2.2.11 Names in Multischema Databases
If you specify the multischema attribute for your database, you can store
data definitions in multiple schemas within that database. To specify the
multischema attribute, use the MULTISCHEMA IS ON clause in a CREATE
DATABASE or ALTER DATABASE statement. If you want SQL behavior
compliant with the ANSI/ISO standard, you must specify the multischema
attribute.

Databases that contain multiple schemas must organize the schemas within
one or more catalogs. To refer to data definitions in a multischema database,
qualify the names of data definitions with the schema and catalog names and,
optionally, qualify with an alias.

When you use an alias to qualify the name of a catalog, schema, or object in a
multischema database:

• Separate subordinate names from the alias and from each other with a
period (.) after each name.

• Use double quotation marks (") to delimit the leftmost name pair.

• Use only uppercase characters in the leftmost name pair.

The leftmost name pair in a qualified name for a multischema object is a
delimited identifier. In an object name, each qualifying name is considered
one level, and names with more than three levels are not allowed. However, a
delimited identifier is interpreted as a single level.

Any piece of a three-level name can have an alias embedded within double
quotation marks, but you can only embed the alias in the leftmost level. For
example, if you include the schema name but no catalog name (implying the
default catalog), you can qualify the schema name with the alias using a
delimited identifier.

By default, the Oracle Rdb implementation of SQL considers strings enclosed in
double quotation marks to be string literals, but the ANSI/ISO SQL standard
interprets strings enclosed by double quotation marks as delimited identifiers.
To take advantage of the ANSI/ISO SQL standard, you must enable ANSI/ISO
SQL quoting before you issue any statements that contain delimited identifiers.
See Section 2.2 for information on how to enable ANSI/ISO SQL quoting.

Remember that the double-quoted leftmost pair in a multischema object name
requires uppercase characters.

Language and Syntax Elements 2–45

The following example shows a three-level name. CORPORATE is an alias for
a database that contains the catalog MARKETING, the schema JONES, and
the domain LAST_NAME.

SQL> SET QUOTING RULES ’SQL99’;
SQL> SHOW DOMAIN "CORPORATE.MARKETING".JONES.LAST_NAME;

If the default catalog is set to MARKETING, user JONES can refer to the
domain in the previous example using an object name qualified by the alias.

SQL> SET QUOTING RULES ’SQL99’;
SQL> SHOW DOMAIN "CORPORATE.LAST_NAME";

Data definitions in single-schema and multischema databases follow different
naming conventions. You can use the MULTISCHEMA IS OFF clause
of the ATTACH or DECLARE ALIAS statement to disable multischema
naming. Section 2.2.18 contrasts single-schema and multischema naming
conventions. To specify RDB$SCHEMA or another schema name, you must
attach to a multischema database with multischema naming enabled. Without
multischema naming, you will only be able to refer to the entire database,
using the alias associated with the database name.

If you do not specify the MULTISCHEMA IS clause, SQL enables multischema
naming if the database was created with the multischema attribute and
disables multischema naming if it was not.

The following example shows the error SQL generates if you try to create a
schema in a database without the multischema attribute:

SQL> ATTACH ’FILENAME personnel’;
SQL> CREATE SCHEMA PACIFIC_NORTHWEST;
%SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced
with multischema enabled

2.2.12 Nonstored Module, Procedure, and Parameter Names (Module
Language Only)

The SQL module language provides a calling mechanism for host language
programs to execute SQL statements contained in a separate file called an SQL
module file. The module contains SQL statements that can be called from
any host language, including those not supported by the SQL precompiler. The
file contains module language elements, including the following user-supplied
names:

• Module name

You supply a module name after the MODULE keyword at the beginning
of an SQL module. If you do not supply a module name, SQL names the
module SQL_MODULE.

2–46 Language and Syntax Elements

Module names must be unique. The following error is returned if a
nonstored module is invoked while a stored module with the same name is
active:

%RDB-E-EXT_ERR, Rdb extension error
-RDMS-E-MODEXTS, there is another module named SALARY_ROUTINES in this
database

• Procedure name

Every SQL module contains one or more procedures consisting of a
procedure name, one or more actual parameter declarations, and a single
executable SQL statement. You must supply a name for each procedure
after the PROCEDURE keyword.

• Parameter name

Actual parameters within a procedure in an SQL module specify a name to
be used for the parameter by the SQL statement in the procedure. Some
special-purpose procedure parameters are SQL keywords (SQLCODE,
SQLCA, SQLDA, SQLSTATE), but you must give names to all other
parameters in SQL modules.

See Chapter 3 for more information about the SQL module language.

See the CREATE MODULE Statement or the Oracle Rdb Guide to SQL
Programming for information about stored module, stored routine, and stored
routine parameter names.

2.2.13 Parameters, Routine Parameters, and SQL Variables
Parameters, routine parameters, and SQL variables are often used in value
expressions (for information on value expression, see Section 2.6).

A variable is an identifier that represents a value that can change during
the execution of a program. You can use SQL variables in multistatement
procedures.

A routine parameter is a variable associated with a parameter of a routine
that is used in a stored routine or an external routine. A stored routine
refers to both stored procedures and stored functions defined using the
CREATE MODULE statement. An external routine refers to both external
procedures and external functions defined using the CREATE PROCEDURE
and CREATE FUNCTION statements.

When you use SQL variables in multistatement procedures or when you use
routine parameters, you do not use indicator variables. See Section 2.2.13.3
for more information about SQL variables in multistatement procedures and

Language and Syntax Elements 2–47

stored routine parameters. See Section 2.2.13.4 for more information about
external routine parameters.

A parameter is an identifier declared in a host language program that is
associated with an SQL statement. A parameter represents values that can
change during the execution of a program. Many SQL data manipulation
clauses that do not accept general value expressions require parameters.
However, you cannot use parameters in data definition language statements.

You can use parameters in the following places:

• Interactive SQL

In interactive SQL, you use the DECLARE Variable statement to declare
the parameter. For more information about declaring parameters and
variables, see DECLARE Variable Statement.

• SQL module language

In programs that call SQL module procedures containing SQL statements,
references to host language variables by SQL statements are indirect. The
variable declared in the program is specified as a parameter in a host
language call statement to a procedure in the SQL module. Parameters in
such call statements are called actual parameters.

In nonstored procedures, the SQL module procedure contains parameter
declarations that correspond to the actual parameters in the calling
program. Module parameters in those declarations are called formal
parameters. The SQL statement in the module procedure uses the formal
parameter name to refer indirectly to the actual parameter named in the
host language call to the module procedure.

• Precompiled SQL

In precompiled programs, SQL statements embedded in the program
refer directly to the host language variable using it in the statement.
The SQL precompiler supports only a subset of the declaration syntax for
host languages. See Section 4.4 for more information. You can only use
parameter names that conform to the rules of the host language.

• Dynamic SQL

In dynamic SQL, dynamically executed SQL statements refer to parameters
with parameter markers denoted by a question mark (?) in the
statement string of PREPARE statements.

SQL statements use parameters for the following purposes:

• SQL retrieves data from the database and places it in parameters for use
by a program.

2–48 Language and Syntax Elements

• Parameters contain data generated by a program that SQL uses to update
the database.

• Data manipulation statements can specify parameters in value expressions.

• Special-purpose parameters called indicator parameters indicate whether
or not the value stored in a corresponding main parameter is null.
(Indicator parameters are not used in stored routines.)

• SQL puts information about the success or failure of SQL statements in
a parameter called SQLCODE that is either declared explicitly or as part
of the SQL Communications Area (SQLCA) or in the SQLSTATE status
parameter (ANSI/ISO SQL standard).

See Appendix C for more information on SQLCODE and SQLSTATE.

• SQL and programs use a collection of parameters called the SQL Descriptor
Areas (SQLDA and SQLDA2) to communicate information about dynamic
SQL statements. See Appendix D for more information.

SQL statements cannot use parameters to refer to columns, tables, or views.
For instance, if BADVAR is a host language variable that contains the name of
a table in the database, the following statement is invalid:

EXEC SQL SELECT FIRST_NAME INTO :GOODVAR FROM :BADVAR END-EXEC

When you use the precompiler, module language, or dynamic SQL, display
operations should use CAST or EXTRACT with CHAR host variables to
convert date-time data from binary format when passing data to and from the
database. For example:

EXEC SQL SELECT CAST(TBL_INT_H3 AS CHAR(4))
INTO :string_var3
FROM ALL_DATE_TABLE;

For more information about the CAST and EXTRACT functions, see
Section 2.6.2.2 and Section 2.6.2.12, respectively.

Section 2.2.13.1 provides more information about parameters.

2.2.13.1 Data Parameters and Indicator Parameters
A data parameter contains the value that an SQL statement stores in,
retrieves from, or compares to a column in the database. An indicator
parameter specifies whether or not its associated data parameter was
assigned a null value. You specify an indicator parameter after the data
parameter. As for data parameters, the notation for referring to indicator
parameters depends on the environment in which an SQL statement is issued.

Language and Syntax Elements 2–49

parameter =

: <data-parameter>

INDICATOR

: <indicator-parameter>

• If you set the dialect to SQL99 or another dialect that enforces the use of
parameters or if you use a clause, such as PARAMETER COLONS, that
enforces the use of parameters, all parameter names must begin with a
colon. This rule applies to declarations and references of module language
procedure parameters. If you do not use one of these dialects or clauses,
no parameter name can begin with a colon. For more information, see SET
DIALECT Statement and Section 3.2.

The current default behavior is no colons are used. However, this default
is deprecated syntax. In the future, colons will be the default because it
allows processing of ANSI/ISO standard modules.

• In SQL statements to be dynamically executed, you refer to the data
parameters and indicator parameters with a single parameter marker
(?). SQL gets information about the parameters in EXECUTE or OPEN
statements. These statements either provide an explicit list of data
parameters and indicator parameters (using the notation for precompiled
SQL or SQL modules as appropriate) or refer to the SQLDA that has fields
that provide information about data parameters (SQLDATA) and indicator
parameters (SQLIND).

Note

In SQL statement syntax diagrams, the parameter syntax element
refers to any of the notations for data parameters and indicator
parameters.

Oracle Rdb recommends that programs declare all indicator parameters as
integers (signed longwords) in the host language program:

• COBOL: PIC S9(9) COMP

To comply with the ANSI/ISO SQL standard, SQL also supports sign
leading separate indicator variables in COBOL and the BINARY argument.

2–50 Language and Syntax Elements

BINARY is a synonym for COMP. For more information, see the supporting
documentation for the COBOL language.

COBOL: PIC S9(9) SIGN LEADING SEPARATE

• FORTRAN: INTEGER*4

• PL/I: BIN FIXED(31)

• C: int num2

• Ada: STANDARD.INTEGER

• BASIC: LONG (module language only)

• Pascal: [LONG] –MAXINT . . . +MAXINT

You declare indicator parameters as an array only when they are used with a
reference to a host structure (see Section 2.2.13.2).

Table 2–6 summarizes when indicator parameters in nonstored procedures are
necessary and how SQL treats null values.

Table 2–6 Indicator Parameters and Null Values

Retrieval from Database Storage into Database

Nulls Allowed? Main Parameter
Indicator
Parameter Main Parameter

Indicator
Parameter

Nulls allowed;
value is not
null.

Set to value
from database
by SQL

Set to 0 or a
positive value
by SQL

Program must
set to value to
be stored

Program must
set to 0 or a
positive value

Nulls allowed;
value is null.

Unchanged from
previous value;
program should
disregard

Set to –1 by
SQL

Ignored by SQL Program must
set to a negative
value

Null values are
not allowed.

Set to value
from database
by SQL

Not necessary;
set to 0 or
a positive
value by SQL if
present

Program must
set to value to
be stored

Not necessary;
program must
set to 0 or a
positive value if
present

2.2.13.2 Host Structures and Indicator Arrays
Host structures are host language parameters that correspond to group
constructs or records in the languages that support such constructs. Use a host
structure to refer to a list of host language variables with a single name. Once
you define a host structure, you can refer to it in an embedded SQL statement
or in an SQL module language procedure instead of listing the host language
variables that comprise it.

Language and Syntax Elements 2–51

Parameters can be qualified by group fields to any depth. The format of a
qualified reference to a parameter in a group construct is:

qualified-parameter =

: parameter-name
group-field-name.

In addition, you can declare an indicator parameter for a host structure by
defining a one-dimensional array of signed longword integers. This array
provides indicator parameters for fields in the host structure and is called
an indicator array. (Indicator arrays are also called indicator structures
or indicator vectors.) Just as you append an indicator parameter to a data
parameter, you can append the name of an indicator array to a host structure
that represents several data parameters. Indicator arrays are the only way to
specify indicator parameters for host structures.

You can refer to a host structure anywhere that SQL allows a list of
parameters:

• VALUES clause of an INSERT statement

• Select lists

• IN predicates

• INTO clause of FETCH or singleton SELECT statements

• USING clause of OPEN or EXECUTE statements

You cannot use host structures in a stored routine or a multistatement
procedure.

The following example shows the declarations in a COBOL program for a host
structure and indicator array that correspond to the EMPLOYEES table in the
personnel database. It also shows an embedded SQL INSERT statement that
uses the host structure and indicator array.

2–52 Language and Syntax Elements

.

.

.
WORKING-STORAGE SECTION.
*
* Host structure declaration. A parameter to match
* each column being retrieved or stored is a subordinate
* field in the structure.
*
01 WS-EMP-REC.

02 WS-EMP-ID PIC X(5).
02 WS-L-NAME PIC X(14).
02 WS-F-NAME PIC X(10).
02 WS-M-INIT PIC X.
02 WS-ADDRESS-1 PIC X(25).
02 WS-CITY PIC X(20).
02 WS-STATE PIC X(2).
02 WS-POSTAL-CODE PIC X(5).
02 WS-SEX PIC X.
02 WS-BIRTH-DATE SQL_DATE.
02 WS-STATUS PIC X.

*
* Indicator array for host structure WS-EMP-REC.
* EMP-REC-IND is the indicator when you refer to WS-EMP-REC.
*
01 WS-EMP-REC-IND.

02 EMP-REC-IND OCCURS 11 TIMES PIC S9(9) COMP.
*
* Indicator declarations for references to individual parameters
* in WS-EMP-REC. You cannot use a subscripted reference to the
* indicator array in such references, but must declare separate
* indicator parameters.

Language and Syntax Elements 2–53

*
01 EMP-ID-IND PIC S9(9) COMP.
01 L-NAME-IND PIC S9(9) COMP.
01 F-NAME-IND PIC S9(9) COMP.
01 M-INIT-IND PIC S9(9) COMP.
01 ADDRESS-1-IND PIC S9(9) COMP.
01 CITY-IND PIC S9(9) COMP.
01 STATE-IND PIC S9(9) COMP.
01 POSTAL-CODE-IND PIC S9(9) COMP.
01 SEX-IND PIC S9(9) COMP.
01 BIRTH-DATE-IND PIC S9(9) COMP.
01 STATUS-IND PIC S9(9) COMP.
.
.
.
EXEC SQL
INSERT INTO EMPLOYEES VALUES (:WS-EMP-REC:EMP-REC-IND)
END-EXEC.
.
.
.

You can also refer to a single parameter in a host structure. In FORTRAN,
C, Pascal, and Ada, you must qualify the parameter name with all preceding
group field names. In COBOL and PL/I, you need to qualify the parameter
with group field names only if the name is ambiguous without such
qualification.

Keep in mind the following notes about host structures and indicator arrays in
embedded SQL statements:

• You must declare separate indicator parameters for each host language
parameter in a structure to which you want to refer. For instance, in the
preceding COBOL example’s declaration of WS-EMP-REC and WS-EMP-
REC-IND, one correct way to refer to the host structure and indicator
parameters for the F-NAME field is:

:WS-EMP-REC.WS-F-NAME:F-NAME-IND.

You cannot use subscripted references to individual elements of an
indicator array as indicator parameters for individual parameters of a
host structure. In the preceding COBOL declaration of WS-EMP-REC and
WS-EMP-REC-IND, an SQL statement could not refer, for example, to the
host structure and indicator parameters for the F-NAME field as:

:WS-EMP-REC.WS-F-NAME:EMP-REC-IND(3).

• COBOL and the SQL precompiler differ in how they interpret references
to host structures. This difference can lead to a precompiler error message
that may be confusing.

2–54 Language and Syntax Elements

COBOL interprets a reference to a host structure as a reference to a single
parameter that has a text data type and the length of the concatenated
subordinate fields in the structure. For example, COBOL interprets a
reference to B-DATE in the following declaration as a reference to a
single parameter that contains the values in the elementary fields of the
structure:

01 B-DATE.
02 CENTURY PIC XX.
02 YEAR PIC XX.
02 MONTH PIC XX.
02 DAYW PIC XX.

However, SQL interprets a reference to a host structure as a reference
to all the individual parameters that comprise it. An embedded SQL
statement that refers to B-DATE must treat B-DATE as four separate host
language parameters. For example, the following SQL statement embedded
in the same program with the previous B-DATE declaration generates a
precompiler error:

EXEC SQL
INSERT INTO TEMP_TABLE (BIRTHDAY) VALUES (:B-DATE)
END-EXEC.
* This statement will generate this precompiler error:
*
* %SQL-F-INVVALLIS,
* The value list must have as many items as the column list.

You can work around this problem by declaring B-DATE as a single
parameter, then using the COBOL REDEFINES clause to declare four
parameters that refer to it, as follows:

01 B-DATE PIC X(9).
01 B-DATE-REDEF REDEFINES B-DATE.

02 CENTURY PIC XX.
02 YEAR PIC XX.
02 MONTH PIC XX.
02 DAYW PIC XX.

COBOL host structures associated with VARCHAR or LONG VARCHAR
columns are exceptions to the rule that SQL interprets references to host
structures as separate references to the elementary fields that comprise
them. For these host structures, SQL interprets the two elementary fields
as a single parameter to or from which to assign a varying-text value. See
Section 4.4.4 for details on declaring COBOL host structures for VARCHAR
or LONG VARCHAR columns.

Language and Syntax Elements 2–55

2.2.13.3 Multistatement Procedure Variables and Stored Routine Parameters
Multistatement procedure variables and stored routine parameters are often
used in value expressions (see Section 2.6). A variable is an identifier that
represents a value that can change during the execution of a program. You use
SQL variables in multistatement procedures. A stored routine parameter
is a variable associated with the parameters of a stored routine that you use
in a stored procedure or stored function. A stored routine refers to both
stored procedures and stored functions defined using the CREATE MODULE
statement.

variable =

: <variable-name>
: <stored-procedure-parameter>

Variables in multistatement procedures and stored routine parameters follow
the rules, such as case-sensitivity rules, associated with the encompassing
module. That means:

• In embedded SQL, the variables follow the rules for the host language in
which the program is written.

• In SQL module language programs, the variables follow the rules for the
SQL interface.

• In stored routines, the variables follow the rules for the SQL interface.

Unlike data parameters, variables and stored routine parameters allow null
values. Because of this, you cannot use indicator parameters with variables
and stored routine parameters.

For more information about stored routine parameters, see CREATE MODULE
Statement.

2.2.13.4 External Routine Parameters
An external routine parameter is a 3GL declaration that corresponds to an
actual parameter in the calling program. These declarations are called formal
parameters. 3GL or SQL statements in the external routine use the formal
parameter name to refer indirectly to the calling programs actual parameters.

External routine parameters cannot represent null values.

2–56 Language and Syntax Elements

2.2.14 Statement Names (Dynamic SQL Only)
Dynamic SQL lets programs accept or generate SQL statements at run time,
in contrast to precompiled statements that must be embedded in the program
before it is compiled. Unlike embedded statements, such dynamically executed
SQL statements are not part of any source code but are created while the
program is running. Dynamic SQL is useful when you cannot predict the type
of SQL statement your program needs to process.

To handle dynamically executed SQL statements, programs use embedded
PREPARE statements to assign a name to the SQL statement created at run
time and to prepare it for execution. The EXECUTE, dynamic DECLARE
CURSOR, and DESCRIBE statements refer to that assigned name. You cannot
qualify prepared statement names.

Because they are prepared with embedded PREPARE statements, you can refer
to dynamic statement names from programs only, not from interactive SQL.

2.2.15 Schema Names
A schema consists of metadata definitions such as tables, views, domains,
constraints, collating sequences, indexes, storage maps, triggers, and the
privileges for each of these.

You name schemas in CREATE SCHEMA or CREATE DATABASE statements.
You can also use schema names to qualify the names of other database
elements such as tables, views, and columns.

Note

In syntax diagrams, the schema-name syntax element refers to either
the qualified or unqualified form of the name given to the schema in
the CREATE statement. That is, in syntax diagrams, the schema-name
is always defined as:

schema-name =

<catalog-name> .
" <alias>.<catalog-name> "

<name-of-schema>
" <alias>.<name-of-schema> "

Language and Syntax Elements 2–57

By default, each database that you create has only one schema. CREATE
DATABASE Statement tells how to create a multischema database. The alias
RDB$DBHANDLE represents the schema when you refer to definitions in
a single-schema database or definitions in a multischema database without
multischema naming enabled.

When you refer to definitions in a multischema database, you must follow
multischema naming rules unless you disable multischema naming. In
multischema naming:

• You must qualify definition names using the name of the schema that
contains them. You cannot refer to a table and a view or two objects of the
same type (such as two tables) with the same name unless they belong to
different schemas.

• You may additionally qualify the names of objects in a multischema
database with the alias and the catalog name.

Whenever you qualify the object name with a catalog name, you must
also specify the schema name, unless you want to use the default schema.
Remember that the catalog name and alias combination or the schema
name and alias combination must be enclosed within double quotation
marks.

• If you prefer, you can qualify an object name in a multischema database
with just an alias, provided you have set the default catalog and schema to
the ones that you want to contain the object. Enclose the alias and object
name pair within double quotation marks and separate them with a period.

If you omit the schema name when referring to objects in a multischema
database, SQL uses a schema with the same name as the user identifier of the
invoker as the default schema. You can use the SET SCHEMA statement to
change the default schema.

The following example creates a table, QUARTERLY_TOTAL, in the schema
RDB$SCHEMA in the catalog RDB$CATALOG of the multischema database
with alias CORP.

2–58 Language and Syntax Elements

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SET QUOTING RULES ’SQL99’;
SQL> SET CATALOG ’RDB$CATALOG’;
SQL> SET SCHEMA ’RDB$SCHEMA’;
SQL> CREATE TABLE "CORP.QUARTERLY_TOTAL" (SALARY_AMOUNT_DOM CHAR);
SQL> SHOW TABLES;
User tables in database with alias CORP

"CORP.ADMINISTRATION".ACCOUNTING.BUDGET
"CORP.ADMINISTRATION".ACCOUNTING.DEPARTMENTS
.
.
.
"CORP.ADMINISTRATION".RECRUITING.RESUMES
"CORP.RDB$CATALOG".RDB$SCHEMA.QUARTERLY_TOTAL

For more information about catalogs, see Section 2.2.3.

2.2.16 Storage Area Names
Storage areas are data and snapshot files that are associated with one or
more tables in a multifile database. You name storage areas in CREATE
STORAGE AREA clauses within CREATE DATABASE or IMPORT statements.
The CREATE STORAGE MAP statements control which parts of which tables
get stored in a particular storage area. In syntax diagrams, the syntax element
area-name specifies that you supply the name of a storage area at that place
in the statement. In CREATE STORAGE AREA clauses and in other SQL
statements, the names you give to storage areas in the CREATE statement can
be qualified by aliases.

You must use ASCII alphanumeric characters for the storage area name.

Note

In syntax diagrams, the area-name syntax element refers to either the
qualified or unqualified form of the name given to the storage area in
the CREATE STORAGE AREA clause.

area-name =

<name-of-area>
<alias> .

Language and Syntax Elements 2–59

2.2.17 Storage Map Names
Storage maps control which parts of which tables get stored in a particular
storage area in a multifile database. You name storage maps in CREATE
STORAGE MAP statements. In syntax diagrams, the syntax element map-
name specifies that you supply the name of a storage area at that place in the
statement.

In CREATE STORAGE MAP and other SQL statements, the names you give to
storage maps in the CREATE statement can be qualified by aliases.

Note

In syntax diagrams, the map-name syntax element refers to either the
qualified or unqualified form of the name given to the storage map in
the CREATE STORAGE MAP statement.

map-name =

<name-of-map>
<alias> .

2.2.18 Stored Names
The name that you specify for a data definition when you create it is called the
SQL name. Each data definition also has a stored name that it is known by
to Oracle Rdb.

You can give the same SQL name to two entities of the same type within
different schemas of a multischema database. For example, you could create a
table called EMPLOYEES in the schema DEPT1 and a second EMPLOYEES
table in the schema DEPT2. For the first EMPLOYEES table created, SQL
assigns a stored name that is the same as the SQL name. For subsequent
EMPLOYEES tables, SQL generates a unique stored name by adding a serial
number and truncating the name, if necessary.

Table 2–7 contrasts SQL and stored names for three definitions in a
multischema database.

2–60 Language and Syntax Elements

Table 2–7 Stored and SQL Names

For This SQL Name: SQL Assigns This Stored Name:1

DEPT1.EMPLOYEES EMPLOYEES

DEPT2.EMPLOYEES EMPLOYEES1

DEPT3.EMPLOYEES EMPLOYEES2

1This table assumes that the EMPLOYEES in DEPT1, DEPT2, and DEPT3 are created
sequentially.

If you prefer to specify a stored name for a definition in a multischema
database instead of relying on SQL to generate one, you can do so using the
STORED NAME IS clause for any CREATE statement. You can only specify
stored names for definitions in multischema databases.

SQL requires that, for each definition of a particular type, the SQL name must
be unique within the schema, and the stored name must be unique within the
database.

The stored name allows you to access multischema definitions using interfaces,
such as Oracle RMU, the Oracle Rdb management utility, that do not
recognize multiple schemas in one database. You can access multischema
definitions by their stored names if you disable multischema naming using
the MULTISCHEMA IS OFF clause in the ATTACH or DECLARE ALIAS
statement.

2.2.19 Table and View Names
You name tables and views in CREATE TABLE and CREATE VIEW
statements. In those and other SQL statements, the names you give to
tables and views in CREATE statements can be qualified by aliases and can
themselves qualify column names.

If your database has the multischema option enabled, you can also qualify
table and view names by schema and catalog names, or by the alias. You must
use double quotation marks to surround the alias and table name pair and
have set your dialect to the ANSI/ISO SQL standard or use the ANSI/ISO
SQL standard quoting rules. See the SET DIALECT Statement and the
SET QUOTING RULES Statement for more information about dialects and
quoting rules. The following are valid names for the EMPLOYEES table
in the database with alias CORP, catalog ADMINISTRATION, and schema
PERSONNEL:

• "CORP.ADMINISTRATION".PERSONNEL.EMPLOYEES

Language and Syntax Elements 2–61

• "CORP.EMPLOYEES"

Note

In syntax diagrams, the table-name and view-name syntax elements
refer to either the qualified or unqualified form of the names given
to the table or view in the CREATE statement. That is, in syntax
diagrams, table-name and view-name are always defined as:

table-name =

<name-of-table>
<schema-name> .
<alias>

view-name =

<name-of-view>
<schema-name> .
<alias>

You must qualify table names and view names with an alias if they are not
in the default database. The following example shows the error that SQL
generates if you try to use an unqualified table name to refer to a database
previously declared with an alias:

SQL> ATTACH ’ALIAS PERS PATHNAME personnel’;
SQL> SET QUOTING RULES ’SQL92’;
SQL> SELECT * FROM EMPLOYEES;
%SQL-F-NODEFDB, There is no default database
SQL> -- This statement will work:
SQL> SELECT * FROM "PERS.EMPLOYEES";

The system default catalog is RDB$CATALOG. The system default schema
is the user name. These defaults can be set in the SQL module header,
the precompiler context file, or interactively by the SET statement. In a
multischema database, you must qualify table names and view names with a
catalog name if they are not in the default catalog, and also with a schema
name if the tables and views are not in the default schema. The error message
shows that the default schema is set to the user name LUFKIN.

2–62 Language and Syntax Elements

SQL> SELECT * FROM "CORP.EMPLOYEES";
%SQL-F-SCHNOTDEF, Schema "CORP.RDB$CATALOG".LUFKIN is not defined
SQL> SELECT * FROM "CORP.ADMINISTRATION".PERSONNEL.EMPLOYEES;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE ZIP_CODE SEX BIRTHDAY STATUS
00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 1947-03-28 1

00165 Smith Terry D
120 Tenby Dr. Chocorua

NH 03817 M 1954-05-15 2
SQL> --
SQL> -- By changing the default catalog from RDB$CATALOG to the
SQL> -- catalog containing EMPLOYEES, you can avoid specifying the
SQL> -- catalog name.
SQL> --
SQL> SET CATALOG ADMINISTRATION;
SQL> SELECT * FROM "CORP.PERSONNEL".EMPLOYEES;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE ZIP_CODE SEX BIRTHDAY STATUS
00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 1947-03-28 1

00165 Smith Terry D
120 Tenby Dr. Chocorua

NH 03817 M 1954-05-15 2

The next example copies data from one database to another. Because the
example declares both databases using aliases, references to tables in either
database must be qualified by the alias for their respective database. In
this case, the table names for both databases are the same, and aliases help
distinguish a table in the target database from a table of the same name in
the source database. The example uses an empty copy of the personnel sample
database called temp and follows this sequence:

SQL> -- Use the alias empty for the temp database:
SQL> --
SQL> ATTACH ’ALIAS empty PATHNAME temp’; !
SQL> --
SQL> -- Use the alias pers for the personnel database:
SQL> --
SQL> ATTACH ’ALIAS pers PATHNAME personnel’; !
SQL> --

Language and Syntax Elements 2–63

SQL> -- Now declare a transaction, using the aliases to allow copying
SQL> -- from the personnel database to the temp database:
SQL> --
SQL> DECLARE TRANSACTION ON empty USING (READ WRITE)
cont> AND ON pers USING (READ ONLY); "
SQL> --
SQL> -- Finally, use an INSERT statement to copy data from the
SQL> -- personnel database into the empty table, qualifying the table
SQL> -- with the aliases:
SQL> --
SQL> INSERT INTO empty.employees #
cont> SELECT * FROM pers.employees;

! The ATTACH statements specify aliases of EMPTY and PERS.

" The DECLARE TRANSACTION statement uses the aliases to include both
databases in a single transaction.

The INSERT statement uses those aliases to distinguish between the
EMPLOYEES table in the personnel database and the EMPLOYEES table
in the temp database.

For an example of using table names to qualify column names, see
Section 2.2.4.

2.2.20 Trigger Names
You name a trigger in the CREATE TRIGGER statement. A trigger name
must be unique within a schema of a multischema database or unique within a
nonmultischema database.

A trigger defines the actions to occur before or after a specified table is
updated (by a write operation such as an INSERT, DELETE, or UPDATE
statement). A trigger can be thought of as a rule on a single table, which takes
effect at a specific time for a particular type of update and causes one or more
triggered actions to be performed.

With triggers, you can define useful actions such as:

• Cascading deletes

Deleting a row from one table causes additional rows to be deleted from
other tables that are related to the first table by key values.

• Cascading updates

Updating a row in one table causes additional rows to be updated in other
tables that are related to the first table by key values. These updates are
usually limited to the key values themselves.

• Summation updates

2–64 Language and Syntax Elements

Updating a row from one table causes a value in a row of another table to
be updated by being increased or decreased.

• Hidden deletes

Causing rows to be deleted from a table by moving them to a parallel table
that is not used by the database.

• Audit log

Records when and by whom a row is inserted, updated, or deleted.

2.3 Data Types
When you define new columns of a table in the CREATE TABLE or ALTER
TABLE statements, you must specify a data type for the column. The data type
of a column controls how SQL interprets and stores values for that column. All
value expressions (functions, parameters, and literals) have associated data
types.

Table 2–8 lists the SQL data type keywords and the underlying OpenVMS data
types.

Table 2–8 Comparison of SQL Keywords with OpenVMS Data Types

SQL Keywords OpenVMS Data Types

CHAR (n) Character string (DSC$K_DTYPE_T)

CHAR (n), qualified
by character set

Character string (DSC$K_DTYPE_T)

NCHAR (n) Character string (DSC$K_DTYPE_T)

VARCHAR (n) Varying character string (DSC$K_DTYPE_VT)

VARCHAR (n),
qualified by
character set

Varying character string (DSC$K_DTYPE_VT)

NCHAR VARYING(n) Varying character string (DSC$K_DTYPE_VT)

LONG VARCHAR Varying character string (DSC$K_DTYPE_VT)

TINYINT [(n)]1 Signed byte integer (DSC$K_DTYPE_B)

SMALLINT [(n)]1 Signed word integer (DSC$K_DTYPE_W)

1Scale factors (n) in SQL integer data types are equivalent to negative scale factors in Oracle Rdb integer data types.
SQL does not support Oracle Rdb positive scale factors.

(continued on next page)

Language and Syntax Elements 2–65

Table 2–8 (Cont.) Comparison of SQL Keywords with OpenVMS Data Types

SQL Keywords OpenVMS Data Types

INTEGER [(n)]1 Signed longword integer (DSC$K_DTYPE_L)

QUADWORD [(n)]1�2 Signed quadword integer (DSC$K_DTYPE_Q)

BIGINT [(n)]1�2 Signed quadword integer (DSC$K_DTYPE_Q)

DECIMAL [(n[,n])]3 Packed decimal string (DSC$K_DTYPE_P)

NUMERIC [(n[,n])]3 Numeric string, left separate sign (DSC$K_DTYPE_NL)

FLOAT [(n)] Single-precision (F-floating) or double-precision (G-floating) floating-point number,
depending on n (DSC$K_DTYPE_F or DSC$K_DTYPE_G)

REAL Single-precision floating-point number (DSC$K_DTYPE_F)

DOUBLE PRECISION4 Double-precision floating-point number: G-floating (DSC$K_DTYPE_G)3

DATE DATE VMS (default DATE) is DSC$K_DTYPE_ADT, DATE ANSI is internal to
Oracle Rdb

TIME Internal to Oracle Rdb

TIMESTAMP Internal to Oracle Rdb

INTERVAL Internal to Oracle Rdb

LIST OF BYTE
VARYING

–

BYTE VARYING –5

1Scale factors (n) in SQL integer data types are equivalent to negative scale factors in Oracle Rdb integer data types.
SQL does not support Oracle Rdb positive scale factors.
2Oracle Rdb recommends that you use the keyword BIGINT in place of QUADWORD.
3Because the DECIMAL and NUMERIC data types are not supported, SQL creates integer or floating-point columns in
the database when it encounters DECIMAL or NUMERIC in table definitions. However, SQL converts between integer,
character, or floating-point values in database columns and numeric string values in procedure parameters and host
language variables.
4SQL converts from G-floating values in the database to a D-floating representation for host languages that do not
support the G-floating data type.
5The BYTE VARYING data type is a string of unsigned 8-bit bytes. It is currently only valid as the format for an SQL
LIST segment but is reserved for future use.

Use the following format when you specify a data type:

2–66 Language and Syntax Elements

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

Language and Syntax Elements 2–67

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

frac =

(<numeric-literal>)

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

2–68 Language and Syntax Elements

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

The following sections describe character, DECIMAL and NUMERIC, fixed-
and floating-point numeric, date-time, LIST OF BYTE VARYING data types,
and rules for converting between data types.

2.3.1 Character Data Types
SQL supports the following character data types:

• CHAR

This data type specifies that the column is a fixed-length sequence of octets
or characters. It indicates the number of octets or characters in the column
with an unsigned integer (n). (See Table 2–2 for a list of the number of
octets used by characters in the supported character sets). The maximum
size for n is 65,271 octets. For characters, the maximum size for n is 65,271
divided by the maximum number of octets per character. For example, the
Kanji character set uses a maximum of 2 octets. Therefore, n is 65,271/2
or 32,635 characters. If you omit n, SQL creates a 1-octet or 1-character
column.

• CHAR or CHARACTER qualified by the keywords CHARACTER SET and
the character set name

This data type has the same characteristics as CHAR, except that the
character set is that specified in the CHARACTER SET clause. For a list
of the character set names, see Section 2.1.

• NCHAR, NATIONAL CHAR, or NATIONAL CHARACTER

This national character data type has the same characteristics as CHAR,
except that the character set is that specified as the national character set.

• VARCHAR or CHARACTER VARYING

This data type specifies that the column is a varying-length sequence
of octets or characters. It indicates the maximum number of octets or
characters in the column with an unsigned integer (n). The maximum size
for n is 65,269 octets. For characters, the maximum size for n is 65,269
divided by the maximum number of octets per character. For example, the

Language and Syntax Elements 2–69

Kanji character set uses a maximum of 2 octets. Therefore, n is 65,269/2 or
32,634 characters.

In addition to the VARCHAR2 synonyms, the CHARACTER VARYING
and CHAR VARYING data type keywords are supported by Oracle Rdb as
synonyms for VARCHAR, in compliance with the ANSI/ISO SQL standard.

• VARCHAR qualified by the keywords CHARACTER SET and the character
set name

This data type has the same characteristics as VARCHAR, except that the
character set is that specified in the CHARACTER SET clause. For a list
of the character set names, see Section 2.1.

• NCHAR VARYING, NATIONAL CHAR VARYING, or NATIONAL
CHARACTER VARYING

This national character set data type has the same characteristics as
VARCHAR, except that the character set is that specified as the national
character set.

• LONG VARCHAR

This data type specifies that the column is a varying-length sequence
of octets or characters with a maximum number of 16,383 octets. For
characters, the maximum size for n is 16,383 divided by the maximum
number of octets per character. For example, the Kanji character set uses
a maximum of 2 octets. Therefore, n is 16,383/2 or 8,191 characters. The
LONG VARCHAR data type is equivalent to specifying VARCHAR (16383).

• RAW is a synonym for VARCHAR. It always has a character set of
UNSPECIFIED (that is, the CHARACTER SET clause is not permitted)
and so can be assigned data from any other character set in the database.
This allows data from any character set to be assigned to a column,
parameter, or variable of this type. If you specify a length, the value can
be 0 to 65535. Actual usage might be limited by available space in a table
row, but the full length can be used by variable and parameter definitions
(as is true for CHAR, VARCHAR, and VARCHAR2 data types).

• LONG is a synonym for LIST OF BYTE VARYING AS TEXT.

• LONG RAW is a synonym for LIST OF BYTE VARYING AS BINARY.

For each data type, the length of each character can be one or more octets,
depending upon the character set. By default, the length of a character data
type is octets. To specify the length in characters, use the SET DIALECT or
SET CHARACTER LENGTH statements.

2–70 Language and Syntax Elements

If you do not qualify the data type with a character set, SQL considers the
column to be of the character set specified as the database default character
set. If you do not specify a default character set for the database, SQL
considers the column to be the DEC_MCS character set.

You cannot use text values in arithmetic expressions—whether they are
literals, stored in parameters, or literals stored in table columns.

SQL> SELECT EMPLOYEE_ID + 1 FROM EMPLOYEES;
%SQL-F-UNSSTRXPR, Unsupported string expression

Note

By default, SQL treats C language character strings as null-terminated
strings. If you want to create a C application to manipulate binary
input:

• Use the $SQL_VARCHAR data type with the SQL C precompiler.

• Use SQL module language with GENERAL as the language
qualifier.

• Use SQL module language and the repository with FIXED as the
character string interpretation option.

2.3.1.1 Calculating the Maximum Length of a CHAR or VARCHAR Column
All SQL data types take up a fixed amount of room in a database row. Most are
predetermined in size. For example, the BIGINT data type requires 8 octets for
storage. However, the CHAR, VARCHAR, and the NATIONAL CHARACTER
equivalent data types allow you to specify the storage size in characters.

Oracle Rdb restricts a stored row to 65,272 octets which limits the number of
columns and the associated data type sizes for the table.

There is also a variable overhead for each table definition which is a varying
number of octets to represent the NULL flags (one flag for each column). The
larger the number of columns in the table, the larger the NULL bit vector
(which is stored as a whole number of octets). For each eight columns in the
table, a single octet is used to store the NULL bit vector.

Note

Each VARCHAR, NATIONAL CHARACTER VARYING (or equivalent
syntax) column requires two additional octets in which to save the
actual length.

Language and Syntax Elements 2–71

The maximum length for a CHAR or VARCHAR column is controlled by the
amount of free space available to store the new column. For example, it is
possible to create a table with a single CHAR(65271) column.

SQL> CREATE TABLE T1 (A CHAR(65271));

However, if you define an additional BIGINT column, the maximum CHAR
length is reduced to 65,263 octets (65,271 minus 8 octets).

SQL> CREATE TABLE T1 (A CHAR(65271), B BIGINT);
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RECMAXEXC, relation T1 definition exceeds data limit

SQL> CREATE TABLE T1 (A CHAR(65263), B BIGINT);

The maximum character length is dependent upon the types and number of
columns in the table.

2.3.2 Date-Time Data Types
SQL provides four data types for expressing dates and times, hereafter called
date-time data types. The DATE, TIME, and TIMESTAMP data types refer to
calendar date and clock time. The INTERVAL data type is a relative date-time
data type that refers to the duration between two date-time values.

The date-time data types are:

• DATE

You can qualify DATE with two keywords:

DATE ANSI specifies a DATE containing Year To Day.

DATE VMS specifies a timestamp containing YEAR TO SECOND.

If you do not qualify the DATE data type, it is interpreted as DATE VMS
when creating columns in a table. When you issue an INSERT or SELECT
statement, you must qualify the DATE data type. The DATE VMS data
type cannot be used in date-time arithmetic.

You can change DATE to DATE ANSI with the SET DEFAULT DATE
FORMAT statement, the precompiler DEFAULT DATE FORMAT clause in
a DECLARE MODULE statement embedded in a program, or the module
language DEFAULT DATE FORMAT clause in a module file. You must use
the SET DEFAULT DATE FORMAT statement before creating domains
or tables. You cannot use this statement to modify the data type once you
create a database definition.

For information on the format of the DATE data type, see Section 2.4.3.

2–72 Language and Syntax Elements

• TIME

Contains the fields HOUR, MINUTE, and SECOND. You can specify
a fractional-seconds precision following TIME. The fractional-seconds
precision, shown in the syntax diagram in Section 2.3 as frac, is a number
between 0 and 2 that represents the number of digits taken up by fractions
of a second. If you specify TIME without a fractional-seconds precision, it
defaults to TIME(0).

• TIMESTAMP

Contains the fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.
You can specify a fractional-seconds precision following TIMESTAMP. The
fractional-seconds precision, shown in the syntax diagram in Section 2.3
as frac, is a number between 0 and 2 that represent the number of digits
taken up by fractions of a second. If you specify TIMESTAMP without a
fractional-seconds precision, it defaults to TIMESTAMP(2), hundredths of a
second.

• INTERVAL

Specifies the difference between two date-time data types.

To qualify which interval in which you want an interval calculation
expressed, SQL provides two categories of intervals, each with its own set
of interval qualifiers, as Table 2–9 shows.

Table 2–9 Interval Qualifiers

Interval Category Interval Qualifiers

YEAR-MONTH YEAR

YEAR TO MONTH

MONTH

DAY-TIME DAY

DAY TO HOUR

DAY TO MINUTE

DAY TO SECOND

(continued on next page)

Language and Syntax Elements 2–73

Table 2–9 (Cont.) Interval Qualifiers

Interval Category Interval Qualifiers

HOUR

HOUR TO MINUTE

HOUR TO SECOND

MINUTE

MINUTE TO SECOND

SECOND

When formatting intervals, Oracle Rdb needs to know how many digits
to expect in the leading field. The minimum value is 1 digit in the
leading field, and the maximum width is 9 digits. The interval leading-
field precision is shown in the syntax diagram in Section 2.3 as prec. If
unspecified, the interval leading-field precision defaults to 2.

In the following example, the HOURS_WORKED column is computed from
two TIMESTAMP columns. The leading-field precision for HOUR and
SECOND interval qualifiers default to HOURS(2) and SECONDS(2).

SQL> CREATE TABLE ACCOUNTING.DAILY_HOURS
cont> (EMPLOYEE_ID CHAR(5),
cont> START_TIME TIMESTAMP,
cont> END_TIME TIMESTAMP,
cont> HOURS_WORKED
cont> COMPUTED BY (END_TIME - START_TIME) HOUR TO SECOND
cont>);
SQL> --
SQL> -- Now show the columns in the table - note default precisions
SQL> --
SQL> SHOW TABLE (COLUMNS) ACCOUNTING.DAILY_HOURS;
Information for table DAILY_HOURS

2–74 Language and Syntax Elements

Columns for table DAILY_HOURS:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5)
START_TIME TIMESTAMP(2)
END_TIME TIMESTAMP(2)
HOURS_WORKED INTERVAL

HOUR (2) TO SECOND (2)
Computed: BY (END_TIME - START_TIME) HOUR TO SECOND

SQL> --
SQL> -- Output shows the two-digit precision in HOUR and SECOND qualifiers
SQL> --
SQL> SELECT EMPLOYEE_ID, HOURS_WORKED FROM ACCOUNTING.DAILY_HOURS;
EMPLOYEE_ID HOURS_WORKED
00415 09:44:36.85
00415 10:16:21.25
00415 10:30:17.57
.
.
.

The fractional-seconds precision, shown in the syntax diagram in
Section 2.3 as frac, represents the number of decimal digits after the
decimal point for the SECOND field. This number represents fractions of
a second. The fractional-seconds precision must be between 0 and 2. If
unspecified, the fractional-seconds precision defaults to 2 for the SECOND
field.

The INTERVAL qualifier must range from a higher to a lower date field.
The order of significance for the date-time fields is (from highest to lowest)
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND. Table 2–10 and
Table 2–11 show the fields that intervals can contain.

Table 2–10 Fields in Year-Month INTERVAL Columns

Keyword Meaning Valid Range

YEAR Years Signed value

MONTH Months Signed value, constrained to –11 . . . 11
for YEAR TO MONTH interval

If you specify only MONTH for the interval, SQL calculates the month value as
� � �� �� , where Y and M represent the year and month stored internally as
(Y,M).

Language and Syntax Elements 2–75

Table 2–11 Fields in Day-Time INTERVAL Columns

Valid Range

Keyword Meaning If Leading-Field Otherwise

DAY Days1 –3649634 . . . 3649634 (same)

HOUR Hours2 –87591216 . . .
87591216

0 . . . 23

MINUTE Minutes3 –999999999 . . .
999999999

0 . . . 59

SECOND Seconds4 –21474836.47 . . .
21474836.47

0 . . . 59.99

1This value is approximately the number of days in 9999 years.
2HOUR limit is derived by multiplying maximum DAY by 24.
3This value is constrained by the maximum interval leading-field precision.
4This value is constrained by the maximum value that can be stored in a INTEGER(2) scale –2.

If you specify a subset of the day-time fields, SQL adds up the values from the
most significant fields into an appropriate value for the highest leading-field
specified.

SQL truncates less significant fields that are not specified in the interval
qualifier. For example, assume that the interval is stored internally as
(D,H,M,S). If you specify HOUR TO MINUTE in the interval qualifier, then
SQL sets HOUR to ������, sets MINUTE to M, and truncates the SECOND
field.

You can use date-time variables and constants in arithmetic expressions. The
list of valid operators appears in Table 2–27. For more information about
date-time arithmetic, see the Oracle Rdb Introduction to SQL.

For information on the compile-time translation of the YESTERDAY, TODAY,
and TOMORROW character string literals, see Section 2.4.2.

Example 2–1 shows how to use several of these date-time data types.

2–76 Language and Syntax Elements

Example 2–1 Using Date-Time Data Types

SQL> -- Create a simple table with a variety of data types. Note the use
SQL> -- of date-time literals for the DEFAULT and CHECK clauses.
SQL> --
SQL> CREATE TABLE DATE_TEST
cont> (A DATE VMS,
cont> B DATE ANSI,
cont> C TIME(0)
cont> DEFAULT TIME ’06:00:00’,
cont> D TIMESTAMP(2),
cont> E INTERVAL YEAR(4)
cont> CHECK(E > INTERVAL ’10’ YEAR)
cont> NOT DEFERRABLE,
cont> F INTERVAL DAY(3) TO MINUTE,
cont> G CHAR(16));
SQL> --
SQL> -- Literal dates are represented as TEXT literals. On OpenVMS,
SQL> -- the date format is controlled by the LIB$DT_INPUT_FORMAT
SQL> -- and SYS$LANGUAGE logical names. For more information about
SQL> -- these logical names, see the OpenVMS documentation for the
SQL> -- Run-Time Library.
SQL> --
SQL> INSERT INTO DATE_TEST (A) VALUE (’2-APR-1957’);
1 row inserted
SQL> SET LANGUAGE SPANISH
SQL> INSERT INTO DATE_TEST (A) VALUE (’2-abr-1957’);
1 row inserted
SQL> SET LANGUAGE ENGLISH
SQL> SELECT A FROM DATE_TEST;
A
2-APR-1957 00:00:00.00
2-APR-1957 00:00:00.00

2 rows selected
SQL> --

(continued on next page)

Language and Syntax Elements 2–77

Example 2–1 (Cont.) Using Date-Time Data Types
SQL> -- The ANSI/ISO SQL standard specifies that only date-time literals
SQL> -- can be assigned to date-time columns (for example, DATE, TIME,
SQL> -- TIMESTAMP, and INTERVAL). These date-time literals are used
SQL> -- in INSERT, SELECT, and UPDATE statements and in CREATE and ALTER
SQL> -- statements.
SQL> --
SQL> INSERT INTO DATE_TEST (B) VALUE (DATE ’1993-2-23’);
1 row inserted
SQL> INSERT INTO DATE_TEST (C) VALUE (TIME ’12:20:00’);
1 row inserted
SQL> INSERT INTO DATE_TEST (D) VALUE (TIMESTAMP ’1993-2-23 12:20:00.00’);
1 row inserted
SQL> INSERT INTO DATE_TEST (E) VALUE (INTERVAL ’35’ YEAR(4));
1 row inserted
SQL> INSERT INTO DATE_TEST (F) VALUE (INTERVAL ’365:10:21’ DAY(3) TO
MINUTE);
1 row inserted
SQL> --
SQL> -- DATE VMS columns can have associated edit strings defined
SQL> -- for them. However, ANSI/ISO date-time values always print
SQL> -- in ANSI/ISO format unless you cast them to DATE VMS.
SQL> --
SQL> SELECT D, CAST(D AS DATE VMS)
cont> FROM DATE_TEST
cont> WHERE D IS NOT NULL;
D
1993-02-23 12:20:00.00 23-FEB-1993 12:20:00.00

1 row selected
SQL> --

(continued on next page)

2–78 Language and Syntax Elements

Example 2–1 (Cont.) Using Date-Time Data Types

SQL> -- Oracle Rdb also supports another internal format for
SQL> -- DATE VMS. This format is similar to the TIMESTAMP format
SQL> -- except that the punctuation is omitted. This example assigns
SQL> -- the CHAR column (A) to the DATE VMS (G) column and then displays
SQL> -- the result. In an application, the CHAR column could be a CHAR
SQL> -- host variable or module language parameter.
SQL> --
SQL> INSERT INTO DATE_TEST (G) VALUE (’1957020100000000’);
1 row inserted
SQL> UPDATE DATE_TEST
cont> SET A=G
cont> WHERE G IS NOT NULL;
1 row updated
SQL> SELECT A, G
cont> FROM DATE_TEST
cont> WHERE G IS NOT NULL;
A G
1-FEB-1957 00:00:00.00 1957020100000000

1 row selected
SQL> ROLLBACK;

2.3.3 DECIMAL and NUMERIC Data Types
SQL provides limited support for the packed decimal (DECIMAL) and signed
numeric (NUMERIC) data types:

• Conversion to integer or floating point in column definitions

Because the databases that underlie SQL may not support these data
types, if you specify the DECIMAL or NUMERIC data type for a column,
SQL generates a warning message and creates the column with a data type
that depends on the precision argument specified. For example:

SQL> CREATE TABLE T (C DECIMAL(3));
%SQL-I-NO_DECIMAL, C is being converted from DECIMAL to SMALLINT.

Following is a list of the data types to which SQL converts:

DECIMAL(1) through DECIMAL(4) are converted to SMALLINT.

NUMERIC(1) through NUMERIC(4) are converted to SMALLINT.

DECIMAL(5) (default for DECIMAL) through DECIMAL(9) are
converted to INTEGER.

NUMERIC(5) (default for NUMERIC) through NUMERIC(9) are
converted to INTEGER.

DECIMAL(10) through DECIMAL(18) are converted to BIGINT.

Language and Syntax Elements 2–79

NUMERIC(10) through NUMERIC(18) are converted to BIGINT.

DECIMAL(19) and larger are converted to FLOAT.

NUMERIC(19) and larger are converted to FLOAT.

• Conversion to packed decimal or signed numeric data types in formal
parameters or host language parameters

You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules, and declare host language parameters with packed decimal or
signed numeric storage format. SQL converts between the data types of
values in the database and the DECIMAL or NUMERIC representation
specified for corresponding parameters and host language parameters.

Prior to Oracle Rdb V6.0, SQL allowed you to insert a value into a column
that exceeded the precision specified. This behavior is maintained for
databases created prior to Oracle Rdb V6.0.

To comply with the ANSI/ISO SQL standard, Oracle Rdb V6.0 and higher
generates an error message if you attempt to exceed the precision specified.
For example:

SQL> INSERT INTO T (C) VALUE (9999);
%RDB-E-VALOUTRANGE, value outside the specified precision (3) for
column "C"

2.3.4 NUMBER Data Type
Oracle Rdb supports the NUMBER data type for compatibility with Oracle
Database but has these differences: the Oracle Database supports up to 38
digits of precision, and scale is restricted to between -84 and 127; Oracle Rdb
supports 18 digits, and the scale is -128 to 127.

The NUMBER data type has these features:

• NUMBER

If no precision is provided, then this maps to DOUBLE PRECISION.

• NUMBER (p) or NUMBER (p, d), where p is precision and d is fractional
precision

When the precision (p) is specified, it is used to map to an integer type, or
DOUBLE PRECISION if the precision is greater than 18.

� �� �, maps to TINYINT
� � � �� �, maps to SMALLINT
� � � �� �, maps to INTEGER
� � � �� ��, maps to BIGINT
� � �� maps to DOUBLE PRECISION

2–80 Language and Syntax Elements

• NUMBER (*) or NUMBER (*, d)

The asterisk (*) is shorthand for the largest scaled binary value. For
Oracle Rdb, this is equivalent to specifying 18 digits, and selects a BIGINT
mapping.

• NUMBER(p, -d)

NUMBER allows d, the fractional precision, to be negative. If the scale is
negative, the data is rounded to the specified number of places to the left of
the decimal point. For example, a specification of (10,-2) means to round to
hundreds.

2.3.5 Fixed-Point Numeric Data Types
SQL provides four fixed-point numeric data types: TINYINT, SMALLINT,
INTEGER, and BIGINT. In all four, you can specify an optional unsigned
integer (n). The integer is a scale factor that indicates the number of places to
the right of the decimal point.

The scale factor must be an integer in the range from 0 to 127. If you do not
specify n, the default is 0 (with no places to the right of the decimal point).

• TINYINT

Specifies that the column is a signed byte. (A byte is 8 contiguous bits.)
The TINYINT data type can store a range of values from –128 through
127.

• SMALLINT

Specifies that the column is a signed 16-bit word. The SMALLINT data
type can store a range of values from –32,768 to 32,767.

• INTEGER

Specifies that the column is a signed 32-bit longword. The INTEGER data
type can store a range of values from –2**31 to (2**31) –1.

• BIGINT

Specifies that the column is a signed 64-bit quadword. The BIGINT data
type can store a range of values from –2**63 to (2**63) –1.

Language and Syntax Elements 2–81

2.3.6 Floating-Point Numeric Data Types
SQL provides three floating-point numeric data types:

• FLOAT

Specifies that the column is a 32-bit (REAL) or 64-bit (DOUBLE
PRECISION) floating-point number, depending on the precision indicated
in the positive integer (n). If n is less than 25, FLOAT specifies a 32-bit
floating-point number. If n is 25 or greater, FLOAT specifies a 64-bit
floating-point number.

The maximum value for n is 53. If FLOAT does not include n, it specifies a
64-bit floating-point number.

• REAL

Specifies that the column is a 32-bit floating-point number with precision
to 24 binary digits.

• DOUBLE PRECISION

Specifies that the column is a 64-bit floating-point number with precision
to 53 binary digits.

2.3.7 LIST OF BYTE VARYING Data Type
The LIST OF BYTE VARYING data type is designed to handle large data
objects with a segmented internal structure. The LIST OF BYTE VARYING
data type is equivalent to a:

• Segmented string

• Binary large object (BLOB) (certain industry implementations)

• LIST OF VARBYTE (alternate name in SQL syntax)

An object of the LIST OF BYTE VARYING data type is usually referred to as
a list. A list is a linked list of data segments, with each segment stored on a
separate page.

An example of a list can be seen in the RESUMES table of the sample
personnel database. The RESUMES table contains two columns: a list column
called RESUME and a character column called EMPLOYEE_ID. Figure 2–2
shows a conceptual diagram of the RESUMES table.

2–82 Language and Syntax Elements

Figure 2–2 Table with a List Column

00329

RESUME

RICHARD D. BALLINGER

92 Pistol Lane Born September 10, 1949

Manchester, NH 03104 Health: Excellent

Telephone: (603) 555−8899

OBJECTIVES:

I am seeking a position that combines

technical and administrative duties,

especially one that involves a long−term

ZK−7548−GE

EMPLOYEE
ID

In a list, you can store unstructured data such as large amounts of text,
long strings of binary input from a data collecting device, or graphics data.
Any data type can be stored and retrieved from a list. The data is stored in
unstructured bytes. For example, you can store character data in a list and
then interpret it as hexadecimal data. Except for the length of the segments,
Oracle Rdb does not know anything about the type of data contained in a list.

There is no limit on the number of segments within a list.

Each segment stored on a page is referenced by the line index structure, which
uses a word offset and a word length. The page structure imposes a segment
size limit of 65,535 unsigned bytes.

Use an unsigned integer (n) to specify the number of octets (bytes) in a column
with the LIST OF BYTE VARYING data type. If you omit n, SQL creates a
1-octet column. In the chained list format, the maximum size for n is 65,508
for the first segment and 65,522 for each subsequent segment. In the indexed
list format, the maximum size for n is 65,530, leaving 5 bytes for overhead.
See Section 2.3.7.1 for more information on the chained and indexed formats
for lists.

Language and Syntax Elements 2–83

The user data portion of a list segment is a field of data type BYTE VARYING.
The BYTE VARYING data type is a string of unsigned 8-bit bytes. The data
type BYTE VARYING, reserved for future use, is currently only valid within a
list segment.

You must use the CREATE TABLE statement to create a list because a list is
stored within a row in a table. In fact, you store a segmented string identifier
in the column with the LIST OF BYTE VARYING data type. The segmented
string identifier is a number that specifies the location of the primary list
segment. In indexed list format, the segmented string identifier points to the
first pointer segment. In chained list format, the segmented string identifier
points to the first list segment. Because you store a pointer to the list table,
rather than the list itself, the list is not constrained by the Oracle Rdb table
size limit. For an example of creating a table that contains a list, see the
CREATE TABLE Statement.

For more information about using lists, see the DECLARE CURSOR
Statement. For information about storing lists in separate storage areas
from other table information, see the CREATE STORAGE MAP Statement.

The LIST OF BYTE VARYING data type supports BINARY and TEXT as
subtypes. Use these subtypes to specify the data contained within a LIST OF
BYTE VARYING data type. The subtype TEXT specifies that the data type can
contain any printable characters. The subtype BINARY specifies that the data
type contains raw binary data represented in hexadecimal notation.

2.3.7.1 On-Disk Format of Lists
Oracle Rdb provides three on-disk formats for lists:

• Chained format

• Indexed format

• Single-segment format

In the original chained format, lists are a chained list of segments. The first
segment contains a pointer to the second segment, the second segment contains
a pointer to the third, and so forth. The final segment contains a null pointer.

Each segment contains an 8-byte database key (dbkey) pointing to the next
segment, leaving 65,522 bytes for user data.

The first segment includes 14 bytes of overhead to describe the segmented
string:

• A quadword that contains the length of the entire string

• A longword that contains the total number of segments

2–84 Language and Syntax Elements

• A word that contains the length of the longest segment

Due to this overhead, the first segment can hold only 65,508 bytes of user data.

This information held in the first segment is returned in the SQLCA structure
when SQL is used to open a list cursor. Figure 2–3 shows the chained list
format.

Figure 2–3 Chained List Format

NU−2581A−RA

pointer

pointer data portion

primary segment

14−byte
segmented

string
information

8−byte
pointer
to next
segment

(65,508 bytes maximum)
data portion

data portion
(65,522 bytes maximum)

The initial segment in this chained list format contains information that is not
available until after all segments are written to the disk. This style inherently
requires updating, so an indexed list format was developed to alleviate this
problem.

In the indexed list format, data segments no longer contain a pointer to
the next segment. Instead, the pointers are kept in special segments called
pointer segments. A pointer segment contains only pointers to data segments.
Figure 2–4 shows the structure of the indexed list format.

Language and Syntax Elements 2–85

Figure 2–4 Indexed List Format

NU−2582A−RA

primary segment

header
pointer to

next pointer
segment

data
pointer 1

data
pointer 2statistics

data segment 1

data portion
(65,535 bytes maximum)

data segment 2

data portion
(65,535 bytes maximum)

The pointer segments allow Oracle Rdb to write the data segments without
needing to revise them later. A pointer segment is sized according to the free
space on a page of the storage area. If there is no more free space on the page
to store a data segment, the pointer is chained with a new pointer segment.
This format, combined with buffering and large page sizes, virtually eliminates
the need to revise pages.

The indexed list format is the default for all lists created by Oracle Rdb.

To retain the chained list format as the default, you must define the logical
name RDMS$USE_OLD_SEGMENTED_STRING.

$ DEFINE RDMS$USE_OLD_SEGMENTED_STRING YES

When this logical name is defined, it causes the application to write the
chained list format to all read/write media.

If you want to use the new indexed list format at a later time, you must
deassign the RDMS$USE_OLD_SEGMENTED_STRING logical name.

Mixing chained and indexed list formats in the same table is supported.
However, you may want to convert your chained list format to the indexed list
format. For example, conversion is desirable if you want to perform FETCH
LAST statements with a scrollable list cursor. With chained list format,
a FETCH LAST statement causes Oracle Rdb to read all segments before
reaching the desired segment; this is not optimal. With indexed list format, a
FETCH LAST statement causes Oracle Rdb to read only the pointer segment
and the last data segment.

2–86 Language and Syntax Elements

To prevent performing a FETCH LAST statement with chained list format,
define the logical name RDMS$SET_FLAGS, or use SET FLAGS with
’NOSCROLL_EMULATION.’ Defining this logical name causes an OPEN
CURSOR statement to fail if it tries to open a SCROLL list cursor on the
chained list format.

You can see a demonstration of the conversion process from chained list format
to indexed list format in the sample program sql_convert_lists.sc, in the sample
directory.

Lists can also be formatted in single segments if the amount of data can fit
within the segmented string buffer, which is controlled by the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name.

A single-segment list consists of a field that is used to differentiate it from
primary segments and data segments. This helps reduce disk storage by
omitting pointers and other overhead. Only a single I/O is necessary to read
the segment. To take advantage of single-segment lists, do not define the
RDMS$USE_OLD_SEGMENTED_STRING logical name.

2.3.8 Data Type Conversions
Two levels of data type conversion can take place when values are assigned
from SQL to a host language parameter or from a host language parameter to
SQL.

• Conversion from a data type that is not supported by the database, or
conversion from a data type that is not supported by a host language to a
data type that is supported

SQL allows programs to declare host language parameters with certain
data types that are not supported by databases underlying SQL. (SQL
has no corresponding data type for COBOL COMP-2 or COMP-3 data, for
example.) Similarly, SQL supports data types for which some languages do
not have a corresponding data type. (PL/I does not support BIGINT data,
for example.) In both instances, data is converted from the unsupported
source data type to a supported target data type.

The specific conversions that take place at this level depend on the host
language. Section 2.3.8.1 describes this level of conversion.

• Conversion from one data type to another

SQL generally allows assignment of a value between two different data
types it supports (such as CHAR and DATE). This level of conversion is
independent of the host language.

Language and Syntax Elements 2–87

Section 2.3.8.2 describes the rules for converting data between supported data
types.

Note

Oracle Rdb encourages application programs to use the CAST function
to explicitly convert the data to consistent and comparable format to
avoid the problems often encountered when integer and text values are
compared.

2.3.8.1 Conversion from Unsupported Data Types
Databases and the various host languages supported by the SQL precompiler
or module language processor do not necessarily support the same set of data
types. SQL handles this incompatibility between databases and the different
languages in one of the following ways:

• SQL converts database values to the host language data type, and host
language values to the supported data type. SQL makes this conversion
only for a subset of valid host language declarations.

• SQL generates an error when it precompiles the program.

Section 4.4 describes which host language declarations SQL converts to and
from for languages supported by the precompiler. Section 3.5 contains tables
showing host language declarations that are compatible with parameters
declared in SQL modules. Such host language parameter declarations must
correspond exactly to the corresponding formal parameter declarations in
the SQL module file. If they do not, the program can generate unpredictable
results at run time. Appendix D describes how SQL converts program and
database data types in dynamic SQL.

Note

None of the host languages that work with the SQL precompiler
supports the DATE data type. SQL does not convert DATE, TIME,
TIMESTAMP, or INTERVAL values to the host language data types
shown in Tables 4–3 through 4–10. Instead, SQL assigns the 64-bit
value stored in a DATE, TIME, TIMESTAMP, or INTERVAL column to
parameters declared, as shown in those tables.

Once the value is stored in the parameter, programs can use the
LIB$FORMAT_DATE_TIME Run-Time Library routine to convert the

2–88 Language and Syntax Elements

64-bit value to an ASCII string for the DATE, TIME, TIMESTAMP, and
INTERVAL data types.

2.3.8.2 Conversion Between Supported Data Types
In general, SQL allows assignments between supported data types. In such
assignments, the underlying database system converts the data type from that
of the source column or parameter to that of the target column or parameter.

Conversions between character data types follow these rules:

• If automatic translation has not been enabled then the character sets of
the source string and the target string must be identical.

• If the source string is longer than the target string, the result is left-
justified and truncated on the right with no error reported for dialects MIA,
SQL89, and SQLV40.

If you use a modern dialect such as SQL99, an error is returned when
storing data unless the truncated characters are only space characters in
which case, no error is returned. If you are retrieving data, a warning
is returned if truncation occurs. The warning is returned regardless of
whether or not the truncated characters are blank.

If the truncation splits a multi-octet character from a mixed multi-octet
character set, SQL replaces the bytes in the incomplete character in the
target string with ASCII space characters.

If the truncation splits a multi-octet character from a fixed multi-octet
character set, SQL replaces the bytes in the incomplete character in the
target string with the low-order octet of the appropriate space character for
any multi-octet character set.

• If the source string is shorter than the target string, the result is left-
justified and filled on the right with the appropriate space character. There
is an exception to this rule: If the column in a table is defined as CHAR
or CHAR(1) in the C language, the target string is terminated with a null
character instead of being filled with blank spaces, generating a string of
length 1.

• If a text data item with trailing blank spaces is assigned to a varying string
data item, the trailing blanks are considered part of the length of the field.

Conversions between fixed-point numeric data types follow these rules:

• If the source has more fractional places than the target can hold, the result
is rounded off.

Language and Syntax Elements 2–89

• If the source uses more integer places than the target can hold, an
arithmetic error is returned.

• If rounding off the decimal portion causes the integer portion to overflow
the target, an arithmetic error is returned.

• If the target has more integer or decimal places than the source, the result
is extended with zeros to the right or left, as appropriate.

Conversions between floating-point numeric data types follow these rules:

• If the source has more precision than the target, the low-order portion of
the source is rounded off.

• If the target cannot express the magnitude of the source, an arithmetic
error is returned.

Conversions for the LIST OF BYTE VARYING data type are not supported.
You can, however, convert an element with the LIST OF BYTE VARYING data
type to data type CHAR or VARCHAR if the language you are using supports
it.

Conversions between data that have different data types follow these rules:

• Text to be converted to a numeric data type must contain text that
represents a number either in decimal format or scientific notation with no
commas.

Numeric data converted to text produces a decimal-format number from
fixed-point data and scientific notation format from floating-point data.

• For conversions from numeric data types to an INTERVAL data type,
you must use the CAST operator. The output type is restricted to an
INTERVAL containing only a single date-time field in the interval qualifier.

• In assignments from the DATE data type to CHAR or VARCHAR, two
different output formats are available. This document refers to these
formats as VMS format and ANSI format.

In assignments from text to DATE VMS, the text expression must
contain ASCII digits representing a date in the format dd-mmm-yyyy
hh:mm:ss.cc, which is translated in Table 2–12.

In assignments from DATE VMS to text, SQL converts to the text
format described in Table 2–12. If the text field is less than 16
characters, the output is truncated from the right, losing hundredths of
seconds first and the first digit of the year last. For example, the date
1990112523053488 (which can be expressed as the literal ’25-Nov-1990
23:05:34.88’) would be truncated to 199011252305 if the text field had
only 12 characters.

2–90 Language and Syntax Elements

If the text field is longer than 16 characters, the field is left-justified
and blank-filled. The text expression appears in the format shown in
Table 2–12.

The following example shows this DATE VMS format:

SQL> -- Oracle Rdb supports another internal format for
SQL> -- DATE VMS. This format is similar to the TIMESTAMP format
SQL> -- except that the punctuation is omitted. This example assigns
SQL> -- the CHAR column (A) to the DATE VMS (G) column and then
SQL> -- displays the result. In an application, the CHAR column could
SQL> -- be a CHAR host variable or module language parameter.
SQL> --
SQL> INSERT INTO DATE_TEST (G) VALUE (’1957020100000000’);
1 row inserted
SQL> UPDATE DATE_TEST
cont> SET A=G
cont> WHERE G IS NOT NULL;
1 row updated
SQL> SELECT A, G
cont> FROM DATE_TEST
cont> WHERE G IS NOT NULL;
A G
1-FEB-1957 00:00:00.00 1957020100000000

1 row selected
SQL> ROLLBACK;

In assignments from text to DATE VMS, the text expression must
contain ASCII digits representing a date in the format shown in
Table 2–12.

If the input text expression is more than 16 characters, only the first
16 characters are used. The rest of the input is ignored.

If the input text expression is between 8 and 15 characters, it is
treated as though it were filled with ASCII zeros on the right, up to 16
characters.

Table 2–12 Format of Text Strings Converted to or from DATE VMS Data Type

String Meaning

yyyy Four digits of year, between 1857 and 9999

nn Two digits of month, including leading zero for months between January and
September, between 01 and 12

dd Two digits of day of month, 01 to 31, right-justified and zero-filled

(continued on next page)

Language and Syntax Elements 2–91

Table 2–12 (Cont.) Format of Text Strings Converted to or from DATE VMS
Data Type

String Meaning

hh Two digits of hour of day on a 24-hour clock, 00 to 23, right-justified and
zero-filled

mm Two digits of minute of hour, 00 to 59, right-justified and zero-filled

ss Two digits of second of minute, 00 to 59, right-justified and zero-filled

cc Two digits of fractions of a second, 00 to 99, right-justified and zero-filled

If the input text expression is less than 8 characters, the assignment
returns a conversion error.

In assignments from text to ANSI format DATE, the text expression
must contain ASCII digits representing a date in the following
formats:

* TIME — hh:mm:ss.cc

* DATE — yyyy-nn-dd

* TIMESTAMP — yyyy-nn-dd hh:mm:ss.cc

* INTERVAL (YEAR-MONTH) — y-m

* INTERVAL (DAY-TIME) — d:hh:mm:ss.cc

• When you use the precompiler, module language, or dynamic SQL,
display operations should always use CAST or EXTRACT with CHAR
host variables to convert date-time data from binary data.

Table 2–13 shows when data type conversions are allowed between data types
and what special conditions can apply to such conversions. Note that:

• Yes: means a conversion is allowed and will be attempted.

• No: means the data types are not compatible.

• N/A: means conversion rules for these data types are already defined.

2–92 Language and Syntax Elements

Table 2–13 Conversion Rules

Target Data Types

Source
Data Types DATE TIME

TIME-
STAMP ADT

INTERVAL
year-
month

INTERVAL
day-time Numeric Text1

DATE ANSI Yes No Yes2 Yes2 No No No Yes7

TIME No Yes Yes3 Yes10 No No No Yes7

TIMESTAMP Yes Yes4 Yes Yes No No No Yes7

ADT Yes Yes4 Yes Yes No No No Yes7

INTERVAL
year-month

No No No No Yes No Extract5 Yes7

INTERVAL
day-time

No No No No No Yes Extract5 Yes7

Numeric No No No No Cast6 Cast6 N/A Yes7

Text Yes8 Yes8 Yes8 Yes8 Yes8 Yes8 N/A Yes9

1Text can be CHAR (TEXT), NCHAR, VARCHAR (VARYING STRING), NCHAR VARYING, or
LONG VARCHAR data types. CHAR and VARCHAR can be qualified by the name of a character
set.
2The TIME portion is 00:00:00.00.
3The DATE portion defaults to the CURRENT_DATE.
4The DATE portion is discarded.
5You must use the EXTRACT built-in function.
6You must use the CAST built-in function, and output must be a single-field interval.
7The target character set must contain ASCII. SQL converts the value to an appropriate ASCII
representation.
8The source character set must contain ASCII, and the value must be presented in ASCII.
9If automatic translation has not been enabled then the character sets must be identical.
10The DATE portion defaults to 17-NOV-1858.

Valid assignments include:

• TEXT can be assigned to TIMESTAMP, TIME, DATE, and INTERVAL. The
syntax must conform to that defined in Section 2.4.3.

• If TIMESTAMP, TIME, DATE (ANSI), or INTERVAL is directly assigned to
CHAR or VARCHAR, then the output will be in the ANSI literal format.

• If DATE (VMS) is directly assigned to CHAR or VARCHAR, then the output
will be the format shown in Table 2–12.

Language and Syntax Elements 2–93

• Numeric data types can be converted to an INTERVAL data type only
using the CAST operator. The output is restricted to an INTERVAL data
type containing only a single date-time field in the interval qualifier. SQL
allows only one field in the interval qualifier.

2.4 Literals
Literals, which are also called constants, specify a value.

The following diagram shows the format of literals:
literal =

numeric-literal
string-literal
date-time-literal
interval-literal
dbkey-literal

Literals are a type of value expression (see Section 2.6). Many SQL clauses
that do not accept general value expressions require literal values. Literal
values can be either numeric, character string, or date. In addition, SQL
provides keywords that refer to literals, for example:

• NULL

• CURRENT_DATE

• SYSTEM_USER

The following sections describe each type of literal.

2.4.1 Numeric Literals
A numeric literal is a string of digits that SQL interprets as a decimal number.
A numeric literal can be a:

• Decimal string that consists of digits and an optional decimal point. The
maximum length, not counting the decimal point, is 19 digits.

• Decimal number in scientific notation (E notation) that consists of a
decimal string mantissa and a signed integer exponent, separated by the
letter E. You cannot embed spaces in E notation.

2–94 Language and Syntax Elements

The following syntax shows the format of numeric literals:
numeric-literal =

<digit>
+ .
- <digit>

. <digit>

E <digit>
+
-

SQL allows flexibility in numeric expressions. You can use unary plus and
minus, and you can use any form of decimal notation. The following are valid
numeric strings:

123
34.9
–123
.25
123.
0.33889909
6.03E+23
6.03E–23

If you use a numeric literal to assign a value to a column or a parameter, the
data type of the column or parameter determines the maximum value you can
assign and whether or not you can assign values to the right of the decimal
point. If the data type of the column or parameter is different from the implied
data type of the numeric literal, SQL converts the literal to the data type of
the column or parameter.

Section 2.3 specifies the range of values allowed for a numeric literal assigned
to each SQL data type.

2.4.2 Character String Literals
SQL recognizes the following types of character string literals:

• A quoted character string to represent printable characters from the
session’s literal character set.

• A quoted character string qualified by the name of a character set. The
string represents printable characters from the named character set.

Language and Syntax Elements 2–95

• A national character string literal (an N followed by a quoted character
string), represents printable characters from the national character set.

• A hexadecimal character string (an X followed by a quoted character string)
represents printable and nonprintable ASCII characters.

Section 2.4.2.1 and Section 2.4.2.2 describe both types of character string
literals.

2.4.2.1 Quoted Character String Literals
A quoted character string literal is a string of printable characters enclosed in
single quotation marks. The maximum length of a character string is 1,024
octets. An unqualified character string must contain characters only from the
literal character set of that session.

The printable ASCII characters consist of:

• Uppercase alphabetic characters:

A–Z

• Lowercase alphabetic characters:

a–z

• Numerals:

0–9

• Special characters:

! @ # $ % ^ & * () - _ = + ‘ ~

[] { } ; : " \ | / ? > < . ,

For a list of the printable characters for DEC_MCS, see the OpenVMS
documentation for users; for a list of printable characters for the other
supported character sets, see the standard for that character set. Section 2.1
lists the standards for each character set.

Use a pair of single quotation marks to enclose a character string literal. If you
use double quotation marks, an informational message is displayed, indicating
that double quotation marks are nonstandard. Double quotation marks are
passed as delimited identifiers if the quoting rules are set to ANSI/ISO SQL.
See the SET QUOTING RULES Statement for information on setting quoting
rules. When using quotation marks, follow these rules:

• Begin and end a character string literal with the same type of quotation
mark.

• To include double quotation marks in a character string literal, enclose the
character string in single quotation marks.

2–96 Language and Syntax Elements

• If a quotation mark appears in a character string literal enclosed by
quotation marks, use two consecutive quotation marks for every one you
want to include in the literal. This technique is necessary if you want to
include quotation marks of both types in one quoted string. See Table 2–14
for examples using quotation marks.

• Ensure that the contents of the quoted string contain an integral number of
characters equal to the minimum number of octets needed for the specified
character set. For example, a Kanji character requires a minimum of
2 octets (or 2 bytes). Therefore, the quoted string must contain a total
number of octets that is a multiple of 2. If you try to insert a quoted string
that contains 3 octets, SQL interprets the ending single quotation (’) mark
as the 4th octet instead of the string terminator and returns an error, as
shown in the following example:

Table 2–14 shows how to use quotation marks in character string literals.

Table 2–14 Embedding Quotation Marks in Literals

This String: Is Interpreted As:

’UNQUOTED LITERAL’ UNQUOTED LITERAL

’"A LITERAL WITH QUOTES"’ "A LITERAL WITH QUOTES"

’’’ANOTHER ONE’’’ ’ANOTHER ONE’

’RICHARD "RICK"SMITH’’S’ RICHARD "RICK"SMITH’S

(continued on next page)

Language and Syntax Elements 2–97

Table 2–14 (Cont.) Embedding Quotation Marks in Literals

This String: Is Interpreted As:

’Richard ’’Rick’’Smith ’’s’ Richard ’Rick’Smith’s

’’’’ ’’’’’ ’ ’’’’

’"’ "

"JONES’ [invalid]

Note

SQL preserves the case distinction in character string literals. That is,
NAME = ’JONES’ and NAME = ’Jones’ yield different results. See
Section 2.7 for more information about comparisons.

2.4.2.1.1 Quoted Character String Literals Qualified by a Character Set
You can use a quoted character string literal qualified by the name of a

character set. The character string must contain characters only from the
named character set.

A string literal qualified by a character set begins with an underscore (_),
followed by the name of a supported character set, and a quoted string. No
blank spaces are allowed outside of the literal.

The following example shows how to qualify character strings with DEC_MCS
and with DEC_KANJI:

_DEC_MCS’Blue’

_DEC_KANJI’Blue’

See Section 2.1 for the names of supported character sets.

2.4.2.1.2 Quoted Character String Literals Qualified by the National
Character Set You can use a national character string literal, which is a
quoted character string literal qualified by the national character set. The
character string must contain characters only from the national character set.

A national character string literal begins with the letter N followed by a quoted
string. No blank spaces are allowed outside of the literal.

The following example shows how to qualify a character string with the
national character set:

N’Blue’

2–98 Language and Syntax Elements

See Section 2.1.7 for information about the national character set.

2.4.2.2 Hexadecimal Character String Literals
A hexadecimal character string literal begins with an X followed by a string
of up to 16 characters enclosed in single quotation marks. This type of string
literal lets you represent nonprintable ASCII characters by specifying the
hexadecimal value of the characters within the quotation marks.

Each ASCII character requires 2 hexadecimal digits to represent it, so you
must provide an even number of characters within the quotation marks. The
only valid characters for hexadecimal character string literals are 0 through 9
and A through F (uppercase or lowercase).

In the following example, the hexadecimal character string literal represents
two delete characters; the ASCII hexadecimal value for a delete character is
FF:

X’FFFF’

2.4.3 Date-Time Literals
When you refer to a date-time data type with a literal in an SQL statement,
you must precede the literal with the data type name and enclose the literal in
single quotation marks. You must provide values for all fields, and values must
be within the valid range for the field.

The following syntax shows the format of date-time literals:

date-time-literal =

TIME ’ time-body ’
DATE ’ date-body ’

ANSI
TIMESTAMP ’ date-body time-body ’

date-body : time-body

time-body =

<hours> : <minutes> : <seconds>

. <fractional-seconds>

date-body =

<year> - <month> - <day>

Language and Syntax Elements 2–99

Note

In the following syntax descriptions, y, d, h, and s stand for single digits
in fields representing years, days, hours, and seconds, respectively. The
letter m stands for 1 digit of the month number when it follows a y,
and 1 digit of the minutes number when it does not. Fractions of a
second are represented by digits after the decimal point.

The syntax for date-time literals is as follows:

• DATE literals

DATE ’yyyy-mm-dd’
or
DATE ’dd-mmm-yyyy hh:mm:ss.ss’

Examples: DATE ANSI ’1993-05-27’
DATE VMS ’27-MAY-1993 15:25:00.00’

SQL includes leap year validation for the 29th of February.

• TIME literals

TIME ’h:m:s’
TIME ’h:m:s.s’

Example: TIME ’14:23:45.19’

TIME represents 24-hour time.

• TIMESTAMP literals

TIMESTAMP ’y-m-d h:m:s’
or
TIMESTAMP ’y-m-d:h:m:s’

Example: TIMESTAMP ’1993-1-4 14:12:01.00’
TIMESTAMP ’1993-1-4:14:12:01.00’

There are two formats allowed for the TIMESTAMP literal. The SQL92
format allows a separating space character between the date-body and
the time-body as shown in the previous example. The nonstandard
format allows a separating colon character between the date-body and the
time-body. For example:

2–100 Language and Syntax Elements

SQL> SET DEFAULT DATE FORMAT ’SQL92’;
SQL> --
SQL> -- Create a table and insert several rows using the SQL92 format and
SQL> -- the nonstandard format for the TIMESTAMP literal.
SQL> --
SQL> CREATE TABLE t (a INTEGER, b TIMESTAMP(2)
cont> DEFAULT TIMESTAMP ’1995-1-1 12:34:10.01’);
SQL> INSERT INTO t (a) VALUE (0);
1 row inserted
SQL> --
SQL> -- Insert a row using the nonstandard format for the TIMESTAMP
SQL> -- literal.
SQL> --
SQL> INSERT INTO t (a,b) VALUE (1, TIMESTAMP ’1995-1-1:12:34:10.01’);
1 row inserted
SQL> --
SQL> -- Insert a row using the SQL92 format for the TIMESTAMP literal.
SQL> --
SQL> INSERT INTO t (a,b) VALUE (2, TIMESTAMP ’1995-1-1 12:34:10.01’);
1 row inserted
SQL> --
SQL> -- Select the rows. SQL uses the SQL92 format to display the
SQL> -- TIMESTAMP literal for all selected rows.
SQL> --
SQL> SELECT a, b, CAST (b AS CHAR(30)) FROM t ORDER BY a;

A B
0 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
1 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01
2 1995-01-01 12:34:10.01 1995-01-01 12:34:10.01

3 rows selected

• INTERVAL literals

INTERVAL ’±y-m’ YEAR TO MONTH
INTERVAL ’±d:h:m:s.s’ DAY TO SECOND

Examples: INTERVAL ’-1-2’ YEAR TO MONTH
INTERVAL ’1:4:30:0.0’ DAY TO SECOND
INTERVAL ’1:10’ DAY TO HOUR
INTERVAL ’235’ MONTH(3)

The following syntax shows the format of interval literals:

interval-literal =

INTERVAL ’ <interval-body> ’ interval-qualifier

Language and Syntax Elements 2–101

interval-body =

years
+ -
- months

days
:

hours
:

min
:

sec
:

. frac-sec

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

frac =

(<numeric-literal>)

prec =

(<numeric-literal>)

2–102 Language and Syntax Elements

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

Because intervals can be signed quantities, a leading addition or
subtraction operator can precede the literal to indicate positive (+) or
negative (–) intervals.

You must specify an appropriate interval qualifier in each interval literal.
The INSERT statement in the following example specifies an interval
qualifier that is too small:

SQL> -- Create a table with a field of interval month(4).
SQL> CREATE TABLE TEST_TABLE (TEST_COL INTERVAL MONTH(4));
SQL> --
SQL> -- Insert into the field using the literal INTERVAL ’200’ MONTH.
SQL> INSERT INTO TEST_TABLE (TEST_COL) VALUE (INTERVAL ’200’ MONTH);
%SQL-F-DATCONERR, Data conversion error for string ’200’
-COSI-F-IVTIME, invalid date or time
SQL> --
SQL> -- The INTERVAL literal used does not provide a large enough
SQL> -- leading-field precision. The default leading-field precision is 2,
SQL> -- and 200 requires a minimum of 3 because it is 3 digits.
SQL> -- To avoid the error, specify 3 as the leading-field precision
SQL> -- instead of relying on the default.
SQL> INSERT INTO TEST_TABLE (TEST_COL) VALUE (INTERVAL ’200’ MONTH(3));
1 row inserted

In addition to these default formats, you can specify alternate formats for
the output display of time and date values using the SET DATE FORMAT
statement. (These alternate formats affect only date string text literals
and their conversion to and from binary dates. Dates supplied by host
languages in 8-byte (64-bit) OpenVMS date and time are not affected by
the SET DATE FORMAT statement.)

You can use the SET DATE FORMAT statement only to format columns
with the DATE VMS data type. The SET DATE FORMAT statement
changes only the output for the date or time formats or both. If you
want to change the input format, use the logical name LIB$DT_INPUT_
FORMAT. See the OpenVMS run-time library documentation for more
information about the LIB$DT_INPUT_FORMAT logical name.

Language and Syntax Elements 2–103

See the SET Statement for complete information on the SET DATE
FORMAT statement.

Note

Three character string literals that are translated into DATE
VMS format (the dd-mmm-yyyy 00:00:00.00 format explained in
Section 2.4.3) are YESTERDAY, TODAY, and TOMORROW. This
translation takes place at compile time. In interactive SQL, the dates
into which the YESTERDAY, TODAY, and TOMORROW literals are
translated are relative to the day when the statement containing the
literals is executed.

However, when a program containing the YESTERDAY, TODAY, and
TOMORROW literals is processed by the precompiler or in SQL module
language, the dates into which the literals are translated at run time
are relative to the compile time. In other words, if you compile a
program containing these literals on January 4, 2003, YESTERDAY
translates to 03-JAN-2003, TODAY translates to 04-JAN-2003, and
TOMORROW translates to 05-JAN-2003, regardless of the day the
program is run. Oracle does not recommend this method.

Oracle recommends using the following:

• CURRENT_DATE - INTERVAL ’1’ DAY for YESTERDAY

• CURRENT_DATE for TODAY

• CURRENT_DATE + INTERVAL ’1’ DAY for TOMORROW

• Use CAST (. . . AS DATE VMS) as required

• DBKEY string literals

THE DBKEY literal is used primarily by database administrators who
have database keys which were displayed in error messages, or shown on
an RMU/SHOW STATISTICS display and wish to display the associated
row.

The dbkey string literal is prefixed by _DBKEY, or _ROWID to identify it
as a special DBKEY literal. Some examples of valid DBKEY literals are as
follows:

• _DBKEY’23:5628:0’

An Oracle Rdb table dbkey has three parts, a logical area (in this
example 23), a page number (in this example 5628), and a line number
(in this example 0). All three parts must be specified.

2–104 Language and Syntax Elements

• _ROWID’23:5628:0, 45:345:15’

The DBKEY string literal may include several comma separated dbkeys
if this is used to reference a view table. Each DBKEY references a row
from the view made up of component rows from a table.

The ROWID keyword is a synonym for DBKEY.

Leading and trailing spaces are ignored, however, spaces may not be
embedded within the numeric values in the DBKEY.

Errors will be reported if the DBKEY is for a different table, is incorrectly
formatted, or does not reference a row. The reported errors are shown
in the following example. A question mark is placed within the string to
highlight the syntax error.

SQL> select * from employees where dbkey = _dbkey’1,2,3’;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-DBKFORMAT, database key format incorrect "1,?2,3" - unexpected
character
SQL> select * from employees where dbkey = _dbkey’-1:+2:0’;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-DBKFORMAT, database key format incorrect "-1:+?2:0" - unexpected
character
SQL> select * from employees where dbkey = _dbkey’23:1:1’;
%RDB-E-NO_RECORD, access by dbkey failed because dbkey is no longer associated
with a record
-RDMS-F-INVDBK, 23:1:1 is not a valid dbkey

2.5 SQL and DATATRIEVE Formatting Clauses
Optional SQL and DATATRIEVE formatting clauses allow you to modify data
displays or query characteristics for interactive SQL users, DATATRIEVE
users, or both. The optional formatting clauses (QUERY NAME and EDIT
STRING) and DATATRIEVE clauses (QUERY HEADER and DEFAULT
VALUE) can be used with the following statements:

• CREATE TABLE

• CREATE DOMAIN

• CREATE VIEW

• ALTER TABLE

• ALTER DOMAIN

Language and Syntax Elements 2–105

The following diagram shows the format for these clauses:

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS literal
DATATRIEVE

• A query header specifies a string, enclosed in quotation marks, that
interactive SQL or DATATRIEVE displays in place of the column name
when it retrieves values from a column. Query headers allow you to specify
descriptive headings for columns.

Both interactive SQL and DATATRIEVE display any query headers you
specify in SQL definitions.

• An edit string specifies a string, enclosed in quotation marks, that
controls how interactive SQL or DATATRIEVE formats the display of
values in a column.

Both interactive SQL and DATATRIEVE use edit strings you specify in
SQL definitions to control display formatting for those definitions.

DATATRIEVE recognizes columns with null values and displays them
according to the edit string for the missing value.

• A query name specifies a string, enclosed in quotation marks, that you
can use instead of the column name when formulating DATATRIEVE
queries. Query names are useful for abbreviating long column names in
DATATRIEVE queries.

SQL does not recognize query names in interactive queries; the QUERY
NAME clause is useful only when you use DATATRIEVE to retrieve the
data.

• If you specify a default value for a column and do not specify that column
in a DATATRIEVE STORE or MODIFY statement, DATATRIEVE stores
the default value specified in the SQL definition.

SQL does not recognize default values in INSERT or UPDATE statements;
the DEFAULT VALUE clause is useful only when you use DATATRIEVE
STORE or MODIFY statements.

See the DATATRIEVE documentation for additional details.

2–106 Language and Syntax Elements

The following sections describe the SQL formatting clauses, QUERY HEADER
and EDIT STRING, in detail.

2.5.1 QUERY HEADER Clause
The QUERY HEADER clause specifies the column header that SQL uses in
displays of result tables that contain that column.

If you include the QUERY HEADER clause, SQL uses the query header as
the column header. If you omit the clause, SQL uses the column name as the
column header.

The column header can include any character except a carriage return, a line
feed, or a control character. To include a double quotation mark in a column
header, enclose it in single quotation marks.

The following example defines a query header for one column and a
DATATRIEVE query name for another column:

SQL> ALTER TABLE TEMP
cont> ADD STATE CHAR (2)
cont> QUERY NAME FOR DATATRIEVE IS ’ST’
cont> ADD SEX CHAR (1)
cont> QUERY HEADER IS ’S’/’E’/’X’;

These statements define query headers and query names for the STATE and
SEX columns. The slash character (/) specifies that the header is split into
three lines, so the header for the SEX column is 1 character wide, like the
column itself.

Both SQL and DATATRIEVE display the query header used in this example.
Only DATATRIEVE recognizes the query name.

2.5.2 EDIT STRING Clause
The EDIT STRING clause specifies the output format of a column value. SQL
uses the EDIT STRING clause as the default format when writing a column
value to a file or output device.

To specify the format of a column value, use a string of one or more edit
characters. Specify the edit string characters in single quotation marks
without embedded spaces. In general, each edit character corresponds to 1
character position in the displayed output. For example, 999999 specifies that
the output is 6 digits in 6 character positions.

To enter more of the same edit characters, shorten the edit string by placing a
repeat count in parentheses following the edit character. For example, the edit
string 9(6) is equal to 999999.

Language and Syntax Elements 2–107

You can change the character that SQL and DATATRIEVE display for the
currency symbol ($), decimal point (.), and digit separator (,) edit string
characters.

To make your output conform to other conventions for numeric and monetary
notation, override the system defaults for these symbols by redefining the
following logical names:

• SYS$CURRENCY: Specifies the character SQL substitutes for the dollar
sign ($) edit string character. The default is a dollar sign.

• SYS$RADIX_POINT: Specifies the character SQL substitutes for the
decimal point (.) edit string character. The default is a decimal point.

• SYS$DIGIT_SEP: Specifies the character SQL substitutes for the comma
(,) edit string character. The default is a comma.

You can also use the SET statement to override these logical names. See the
SET Statement for more information.

Tables 2–16 through 2–23 list the edit string characters. When you specify
an edit character, you must consider the type of the field: alphabetic,
alphanumeric, numeric, or date. Using edit string characters designated
as only alphabetic or alphanumeric on numeric fields or vice versa produces
unexpected results.

Table 2–15 lists the CDO edit string characters accepted by SQL.

Table 2–15 CDO Edit Strings Supported by SQL

Character
Type

CDO Character
or String

Alphabetic A

Alphanumeric T

X

Colon :

Comma ,

Date, Day, and Time D

H

J

M

(continued on next page)

2–108 Language and Syntax Elements

Table 2–15 (Cont.) CDO Edit Strings Supported by SQL

Character
Type

CDO Character
or String

N

P

R

Q

W

Y

%

*

Decimal point .

Digit 9

Encoded sign C

Exponent E

Floating S

Z"string"

-

+

$

Literal ’string’

Blank B

Minus parentheses (())

Missing separator ?

Repeat count x(n)

Table 2–16 lists the alphabetic and alphanumeric replacement edit string
characters.

Language and Syntax Elements 2–109

Table 2–16 Alphabetic and Alphanumeric Replacement Edit String Characters

Character
Type

Edit
String
Character Description

Alphabetic
Replacement

A Replaces each A with an alphabetic character from the column’s content.
Places an asterisk (*) in the position of each digit or nonalphabetic character
in the column’s content.

SQL> ALTER TABLE EMPLOYEES ALTER ADDRESS_DATA_1
cont> EDIT STRING ’A(25)’;
SQL> SELECT ADDRESS_DATA_1 FROM EMPLOYEES LIMIT TO 2 ROWS;
ADDRESS_DATA_1
*** Parnell Place
*** Tenby Dr*
2 rows selected

Alphanumeric
Replacement

X Replaces each X with one character from the column’s content.

SQL> ALTER TABLE EMPLOYEES ALTER MIDDLE_INITIAL
cont> EDIT STRING ’x.’;
SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES LIMIT TO 3 ROWS;
MIDDLE_INITIAL
A.
D.
NULL

3 rows selected

T Reserves the number of display columns specified for the column text. T edit
strings are useful for controlling how long character strings wrap in displays.
Edit strings containing a T cannot contain other characters.

SQL> ALTER TABLE EMPLOYEES ALTER ADDRESS_DATA_1
cont> EDIT_STRING ’T(5)’;
SQL> SELECT ADDRESS_DATA_1 FROM EMPLOYEES;
ADDRESS_DATA_1
146
Parne
ll
Place

Table 2–17 lists the numeric replacement edit string characters.

2–110 Language and Syntax Elements

Table 2–17 Numeric Replacement Edit String Characters

Edit
String
Character Description

9 Replaces each 9 with 1 digit from the column’s content. Nondigit characters are ignored; the
digits are right-justified in the output, and the leading character positions (if any) are filled
with zeros.

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’999999999’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT
000026291
000051712
2 rows selected

Z Replaces each Z with 1 digit from the column’s content, except for leading zeros in the
column’s content, which are replaced with blank spaces.

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’ZZZZZZZZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT

26291
51712

2 rows selected

* Replaces each asterisk (*) with 1 digit from the column’s content, except for leading zeros,
which are replaced with asterisks.

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’*********’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT
****26291
****51712
2 rows selected

. A period (.) specifies the character position of the decimal point.

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’ZZZZZZ.ZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
26291.00
51712.00

2 rows selected

Table 2–18 lists the alphanumeric insertion edit string characters.

Language and Syntax Elements 2–111

Table 2–18 Alphanumeric Insertion Edit String Characters

Edit
String
Character Description

+ If only one plus sign (+) is specified for an alphanumeric column, inserts the plus sign (+) in
that position.

SQL> ALTER TABLE EMPLOYEES ALTER EMPLOYEE_ID
cont> EDIT STRING ’XX+XXX’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES LIMIT TO 2 ROWS;
EMPLOYEE_ID
00+164
00+165
2 rows selected

- Inserts a hyphen (-) in that character position.

SQL> ALTER TABLE EMPLOYEES ALTER EMPLOYEE_ID
cont> EDIT STRING ’XX-XXX’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES LIMIT TO 2 ROWS;
EMPLOYEE_ID
00-164
00-165
2 rows selected

. Inserts a period (.) in that character position.

SQL> ALTER TABLE EMPLOYEES ALTER MIDDLE_INITIAL
cont> EDIT STRING ’X.?’’No middle initial’;
SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES LIMIT TO 10 ROWS;
MIDDLE_INITIAL
D.
G.
P.
O.
M.
No middle initial
I.
No middle initial
A.
E.
10 rows selected

(continued on next page)

2–112 Language and Syntax Elements

Table 2–18 (Cont.) Alphanumeric Insertion Edit String Characters

Edit
String
Character Description

, Inserts a comma (,) in that character position.

SQL> ALTER TABLE EMPLOYEES ALTER EMPLOYEE_ID
cont> EDIT STRING ’XX,XXX’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES LIMIT TO 2 ROWS;
EMPLOYEE_ID
00,164
00,165
2 rows selected

Table 2–19 lists the numeric insertion edit string characters.

Table 2–19 Numeric Insertion Edit String Characters

Edit
String
Character Description

+ If only one plus sign (+) is specified, places a plus sign (+) if the column’s content is positive
or places a minus sign (–) if it is negative, in the leftmost character position.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’+9(9).99’;
SQL> SELECT COL1 FROM TEMP;

COL1
+000053333.00
-000053333.00

– If only one minus sign (–) is specified, places a blank space if the column’s content is positive
or places a minus sign (–) if it is negative, in the leftmost character position.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’-9(9).99’;
SQL> SELECT COL1 FROM TEMP;

COL1
000053333.00

-000053333.00

(continued on next page)

Language and Syntax Elements 2–113

Table 2–19 (Cont.) Numeric Insertion Edit String Characters

Edit
String
Character Description

. Inserts the character specified by the logical name SYS$RADIX_POINT (default is a decimal
point (.)) in that character position. Put only one decimal point (.) in a numeric edit string.
(SYS$RADIX_POINT is supported only on OpenVMS.)

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’ZZZZZZ.ZZZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT
26291.0000
51712.0000

2 rows selected

, If all the digits to the left of the comma are suppressed zeros, replaces the comma (,) with
a blank space. If not, inserts the character specified by the logical name SYS$DIGIT_SEP
(default is a comma) in that character position. (SYS$DIGIT_SEP is supported only on
OpenVMS.)

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’ZZZ,ZZZ.ZZZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT
26,291.0000
51,712.0000

2 rows selected

CR If the column’s content is negative, inserts the letters CR. If the column’s content is positive,
inserts two blank spaces. Put only one CR in an edit string, either at the far right or the far
left.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’ZZZZZ.ZZCR’;
SQL> SELECT COL1 FROM TEMP;

COL1
53333.00
53333.00CR

(continued on next page)

2–114 Language and Syntax Elements

Table 2–19 (Cont.) Numeric Insertion Edit String Characters

Edit
String
Character Description

DB If the column’s content is negative, inserts the letters DB. If the column’s content is positive,
inserts two blank spaces. Put only one DB in an edit string, either at the far right or the far
left.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’ZZZZZ.ZZDB’;
SQL> SELECT COL1 FROM TEMP;

COL1
53333.00
53333.00DB

(()) If the column’s content is negative, enclosing an edit string in double sets of parentheses
inserts single left and right parentheses before and after the column value.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’((9(6).99))’;
SQL> -- Equivalent notation: ’((999999.99))’
SQL> SELECT COL1 FROM TEMP;

COL1
053333.00

(053333.00)

Table 2–20 lists the alphanumeric and numeric insertion edit string
characters.

Language and Syntax Elements 2–115

Table 2–20 Alphanumeric and Numeric Insertion Edit String Characters

Edit
String
Character Description

B Inserts a blank space in that character position.

SQL> ALTER TABLE EMPLOYEES ALTER EMPLOYEE_ID
cont> EDIT STRING ’XXXXBX’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES LIMIT TO 2 ROWS;
EMPLOYEE_ID
0016 4
0016 5
2 rows selected

0 Inserts a zero in that character position.

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’99999.000’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY LIMIT TO 2 ROWS;
SALARY_AMOUNT
26291.000
51712.000
2 rows selected

$ If only one dollar sign ($) is specified, inserts the character specified by the logical name
SYS$CURRENCY (default is a dollar sign) in that character position. (SYS$CURRENCY is
supported only on OpenVMS.)

SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’$9(9)’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT
$000026291

.

.

.
$000007089

.

.

.

(continued on next page)

2–116 Language and Syntax Elements

Table 2–20 (Cont.) Alphanumeric and Numeric Insertion Edit String Characters

Edit
String
Character Description

% Inserts a percent sign (%) in that character position.

SQL> CREATE VIEW TEST (SALARY EDIT STRING ’$99999.99’,
cont> POINTLESS_PERCENT EDIT STRING ’%99.999’)
cont> AS SELECT SALARY_AMOUNT,
cont> SALARY_AMOUNT/SUM(SALARY_AMOUNT)
cont> FROM SALARY_HISTORY WHERE SALARY_END IS NULL
cont> GROUP BY SALARY_AMOUNT;
SQL> SELECT * FROM TEST LIMIT TO 2 ROWS;

SALARY POINTLESS_PERCENT
$08687.00 %01.000
$08951.00 %01.000
2 rows selected

/ Inserts a slash (/) in that character position.

SQL> ALTER TABLE EMPLOYEES ALTER LAST_NAME
cont> EDIT STRING ’XXX/’;
SQL> SELECT LAST_NAME FROM EMPLOYEES LIMIT TO 2 ROWS;
LAST_NAME
Ame/
And/
2 rows selected

Literal Inserts the character string literal enclosed in quotation marks in that position. The
quotation marks are not inserted in the output.

SQL> ALTER TABLE EMPLOYEES ALTER LAST_NAME
cont> EDIT STRING ’XXX/’’Truncated last name’;
SQL> SELECT LAST_NAME FROM EMPLOYEES LIMIT TO 2 ROWS;
LAST_NAME
Ame/Truncated last name
And/Truncated last name
2 rows selected

Table 2–21 lists the numeric floating insertion edit string characters.

Language and Syntax Elements 2–117

Table 2–21 Numeric Floating Insertion Edit String Characters

Edit
String
Character Description

$ If more than one dollar sign ($) is specified to the left of the other edit string characters,
suppresses leading zeros and inserts the character specified by the SYS$CURRENCY logical
name (default is a dollar sign) to the left of the leftmost digit. (SYS$CURRENCY is supported
only on OpenVMS.)

SQL> -- Compare this with single $ edit string character:
SQL> ALTER TABLE SALARY_HISTORY ALTER SALARY_AMOUNT
cont> EDIT STRING ’$(9).99’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

$26291.00
.
.
.

$7089.00
.
.
.

+ If more than one plus sign (+) is specified to the left of the other edit string characters,
suppresses leading zeros and displays the sign of the column’s value (plus or minus) to the
left of the leftmost digit.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> -- Compare this with single + edit string character:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’+(9)’;
SQL> SELECT COL1 FROM TEMP;

COL1
+53333
-53333

(continued on next page)

2–118 Language and Syntax Elements

Table 2–21 (Cont.) Numeric Floating Insertion Edit String Characters

Edit
String
Character Description

– If more than one minus sign (–) is specified to the left of the other edit string characters,
suppresses any leading zeros in the same position as minus signs. If the value of the column
is negative, displays a minus sign to the left of the leftmost digit.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> -- Compare this with single - edit string character:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’-(9)’;
SQL> SELECT COL1 FROM TEMP;

COL1
53333
-53333

Table 2–22 lists the floating-point, null value, and missing value edit string
characters.

Table 2–22 Floating-Point, Null Value, and Missing Value Edit String Characters

Character
Type

Edit
String
Character Description

Floating-
Point
Edit String

E The E divides the edit string into two parts for floating-point or scientific
notation. The first part controls display of the mantissa, and the second part
controls display of the exponent.

SQL> -- COL1 is INTEGER and contains the values 53333 and -53333:
SQL> ALTER TABLE TEMP ALTER COL1
cont> EDIT STRING ’+9.9(4)E+9’;
SQL> SELECT COL1 FROM TEMP;

COL1
+5.3333E+4
-5.3333E+4

(continued on next page)

Language and Syntax Elements 2–119

Table 2–22 (Cont.) Floating-Point, Null Value, and Missing Value Edit String Characters

Character
Type

Edit
String
Character Description

Null Value
Missing
Value

? The question mark (?) denotes the beginning of a quoted string displayed
when the column value is null (in SQL) or matches the value specified in a
MISSING VALUE clause (in DATATRIEVE). If the column value is not null,
the edit string preceding the question mark controls display of the value.

SQL> ALTER TABLE EMPLOYEES ALTER MIDDLE_INITIAL
cont> EDIT STRING ’X.?’’No middle initial’;
SQL> SELECT MIDDLE_INITIAL FROM EMPLOYEES LIMIT TO 10 ROWS;
MIDDLE_INITIAL
D.
G.
P.
O.
M.
No middle initial
I.
No middle initial
A.
E.
10 rows selected

Table 2–23 lists the date replacement edit string characters for the DATE VMS
data type.

Table 2–23 Date Replacement Edit String Characters

Edit
String
Character Description

D Replaces each D with the corresponding digit of the day of the month. Put no more than two
Ds in a date edit string; the use of DD is recommended.

SQL> ALTER TABLE EMPLOYEES ALTER BIRTHDAY
cont> EDIT STRING ’DD-MMM-YYYY’;
SQL> SELECT BIRTHDAY FROM EMPLOYEES LIMIT TO 2 ROWS;
BIRTHDAY
15-May-1954
12-Jan-1923
2 rows selected

(continued on next page)

2–120 Language and Syntax Elements

Table 2–23 (Cont.) Date Replacement Edit String Characters

Edit
String
Character Description

H Replaces each H with the corresponding digit of the hour of the day in 12-hour notation.

R Replaces each R with the corresponding digit of the hour of the day in 24-hour notation.

P Replaces each P with the minute of the hour.

Q Replaces each Q with the second of the minute.

M Replaces each M with the corresponding letter of the name of the month. An edit string of
M(9) prints the entire name of the month.

SQL> ALTER TABLE EMPLOYEES ALTER BIRTHDAY
cont> EDIT STRING ’M(9)BDD,BYYYY’;
SQL> SELECT BIRTHDAY FROM EMPLOYEES LIMIT TO 2 ROWS;
BIRTHDAY
March 28, 1947
May 15, 1954
2 rows selected

N Replaces each N with a digit of the number of the month. Put no more than two Ns in a date
edit string; the use of NN is recommended.

SQL> ALTER TABLE EMPLOYEES ALTER BIRTHDAY
cont> EDIT STRING ’NN/DD/YYYY’;
SQL> SELECT BIRTHDAY FROM EMPLOYEES LIMIT TO 2 ROWS;
BIRTHDAY
5/15/1954
1/12/1923

2 rows selected

Y YY represents the year of the century and YYYY represents the year and century. This
release supports YYYYY for dates beyond the year 9999. For example, YYYYNNDD can
represent 19990114.

J Replaces each J with the corresponding digit of the Julian calendar date. Put no more than
three Js in a date edit string; the use of JJJ is recommended.

SQL> ALTER TABLE EMPLOYEES ALTER BIRTHDAY
cont> EDIT STRING
cont> ’M(9)BDD’’ is the ’’JJJ’’th day of ’’YYYY’;
SQL> SELECT BIRTHDAY FROM EMPLOYEES LIMIT TO 2 ROWS;
BIRTHDAY
March 28 is the 087th day of 1947
May 15 is the 135th day of 1954
2 rows selected

(continued on next page)

Language and Syntax Elements 2–121

Table 2–23 (Cont.) Date Replacement Edit String Characters

Edit
String
Character Description

W Replaces each W with the corresponding letter from the day of the week. An edit string of
W(9) prints the entire day. Put no more than 9 Ws in a date edit string.

SQL> ALTER TABLE EMPLOYEES ALTER BIRTHDAY
cont> EDIT STRING ’W(9),BM(9)BDD,BYYYY’;
SQL> SELECT BIRTHDAY FROM EMPLOYEES LIMIT TO 2 ROWS;
BIRTHDAY
Friday, March 28, 1947
Saturday, May 15, 1954
2 rows selected

B Replaces each B with a blank space in that character position.

/ Inserts a slash (/) in that character position.

- Inserts a hyphen (-) in that character position.

: Inserts a colon (:) in that character position.

. Inserts a period (.) in that character position.

% Inserts a percent Meridian indicator (%) in that character position. This string defaults to
"AM" before noon and "PM" after noon.

*
(asterisk)

Replaces each * with fractions of a second. For example, RR:PP:QQ.** represents 22:34:45.56.

If you specify an edit string incompatible with a column, SQL displays question
marks when it retrieves the column values.

SQL> ALTER TABLE EMPLOYEES ALTER ADDRESS_DATA_1 EDIT STRING ’99999’;
SQL> SELECT ADDRESS_DATA_1 FROM EMPLOYEES LIMIT TO 2 ROWS;
ADDRESS_DATA_1
??????????????
??????????????
2 rows selected

Usage Notes

• On OpenVMS systems the SET LANGUAGE statement can be used to
select an alternate national language environment. Some languages define
an alternate translation for the meridian indicators using the logical names
LIBMI_U, LIBMI_L, and LIB$MI_C defined in the language specific
logical name table. For instance, the Swedish translations are "FM" and

2–122 Language and Syntax Elements

"EM" and are defined in the LNM$LANGUAGE_SWEDISH logical name
table.

$ show logical/table=LNM$LANGUAGE_SWEDISH LIB$MI*

(LNM$LANGUAGE_SWEDISH)

"LIB$MI_C" = "Fm"
= "Em"

"LIB$MI_L" = "fm"
= "em"

"LIB$MI_U" = "FM"
= "EM"

SQL will attempt to use the translation of LIB$MI_U, then LIB$MI_L and
finally LIB$MI_C before defaulting to the strings "AM" and "PM" if no
translation is available for the current language.

• If the edit characters are narrower than required to display the field value
then trailing digits or letters will be truncated. Excess editing characters
are ignored. Therefore, ’RRRR:PP’ is treated as though ’RR:PP’ were
specified.

Note

Future versions of Oracle Rdb may support more precision for the
fractional seconds edit string. Therefore, do not use more than two
asterisks because the wider field width may be interpreted differently
in a future version.

• Oracle Rdb automatically trims leading zeros from the first numeric field
in the output, and any numeric field following a space character. The
space may appear in a quoted literal or the space formatting character (B).
The year (Y) and fractional seconds (*) format fields are never trimmed of
leading zeros.

Example
The following example shows these new edit characters.

Language and Syntax Elements 2–123

SQL> set default date format ’SQL92’;
SQL> set quoting rules ’SQL92’;
SQL>
SQL> create table T (dt timestamp(2)
cont> edit string ’YYYY-NN-DDBRR:PP:QQ.**’);
SQL> insert into T value (current_timestamp);
1 row inserted
SQL>
SQL> select dt from T;
DT
1999-01-16 10:17:12.63

1 row selected
SQL>
SQL> select dt as "Just Time" edit using ’HH:PPB%%’ from T;
Just Time
10:17 AM
1 row selected
SQL>
SQL> set language SWEDISH;
SQL>
SQL> select dt as "Just Time" edit using ’HH:PPB%%’ from T;
Just Time
10:17 FM
1 row selected

2.6 Value Expressions
A value expression is a symbol or string of symbols used to represent or
calculate a single value. When you use a value expression in a statement, SQL
retrieves or calculates the value associated with the expression and uses that
value when executing the statement.

Value expressions are also called scalar expressions or expressions.

There are several different types of value expressions:

• A literal directly specifies a value. See Section 2.4 for more information.

• A parameter represents a value in a host language program or in an SQL
module. See Section 2.2.13 for more information.

• A column name represents a value contained in table rows. See
Section 2.2.4 for details on specifying value expressions with column
names.

• A column select expression used as a value expression specifies a one-value
result table. See Section 2.8.2 for more information.

• A built-in function calculates values based on input value expressions. See
Section 2.6.2 for details.

2–124 Language and Syntax Elements

SQL built-in functions include functions such as CAST, CURRENT_USER,
and TRIM. For a complete list of built-in functions, see Section 2.6.2.

• An aggregate function calculates a single value for a collection of rows in a
result table. See Section 2.6.3 for details.

SQL aggregate functions are:

– AVG

– COUNT

– MAX

– MIN

– STDDEV, STDDEV_SAMP, STDDEV_POP

– SUM

– VARIANCE, VAR_SAMP, VAR_POP

• SQL functions (CONCAT, CONVERT, DECODE, GREATEST, LEAST,
LENGTH, LENGTHB, SIGN, SYSDATE, SYSTIMESTAMP, SYS_GUID,
ROUND and TRUNC) have been added to the Oracle Rdb SQL interface
for compatibility with Oracle SQL. See the Oracle Database SQL Language
Reference Manual for more information.

• The DBKEY or ROWID keyword represents the value of an internal
pointer called a database key to a table row. The ROWID keyword is a
synonym to the DBKEY keyword. See Section 2.6.5 for more information.

• A character value expression represents a value that belongs to the
CHAR, CHARACTER, VARCHAR, LONG VARCHAR, NCHAR, or NCHAR
VARYING data type. You can link two character value expressions
together using the concatenation operator (| |), CONCAT and CONCAT_
WS functions.

• You can also combine certain value expressions with arithmetic operators
to form a value expression.

• A substring specifies a portion of a character value expression that you can
manipulate using character operators and functions.

• A conditional expression is a form of the value expression that allows
applications to return alternative information within an expression. See
Section 2.6.8 for details.

Conditional expressions are:

– ABS

Language and Syntax Elements 2–125

– CASE

– COALESCE (or NVL)

– DECODE

– GREATEST

– LEAST

– NULLIF

– NVL2

– SIGN

The following syntax diagrams show the format of an SQL value expression:

value-expr =

numeric-value-expr
char-value-expr
date-time-value-expr
interval-value-expr
date-vms-value-expr
DBKEY
NULL
ROWID

numeric-value-expr =

numeric-value-factor
+ +
- -

*
/

2–126 Language and Syntax Elements

numeric-value-factor =

common-value-expr
numeric-literal
BITSTRING (numeric-value-expr FROM

<start-position>)
FOR <string-length>

uid-numeric-functions
length-value-functions
POSITION (char-value-expr IN

char-value-expr)
FROM numeric-value-expr

EXTRACT (date-time-field

FROM date-time-value-expr)

common-value-expr =

<column-name>
<parameter>
<qualified-parameter>
<variable>
(col-select-expr)
CAST (value-expr AS data-type)

<domain-name>
VALUE
aggregate-function
conditional-expr
function-invocation
(value-expr)

Language and Syntax Elements 2–127

aggregate-function =

COUNT (*)
COUNT (value-expr) filter-clause
AVG ALL
MIN DISTINCT
MAX
SUM
STDDEV
VARIANCE
STDDEV_POP (numeric-value-expr)
STDDEV_SAMP
VAR_POP
VAR_SAMP

filter-clause =

(WHERE predicate)

conditional-expr =

NULLIF (value-expr , value-expr)
COALESCE (value-expr , value-expr)
NVL
GREATEST
LEAST
NVL2 (value-expr, value-expr, value-expr)
DECODE (value-expr, search , result)

, , default
ABS (value-expr)
SIGN
simple-case-expr
searched-case-expr

simple-case-expr =

CASE value-expr WHEN with-values THEN value-expr

END
ELSE value-expr

2–128 Language and Syntax Elements

searched-case-expr =

CASE WHEN predicate THEN value-expr

END
ELSE value-expr

with-values =

value-expr
partial_predicate1
partial_predicate2

,

partial_predicate1 =

NOT CONTAINING
NOT MATCHING
NOT STARTING WITH
=
<>
^=
!=
<
>=
>
<=

partial_predicate2 =

IS NOT NULL
NOT BETWEEN value-expr AND value-expr

ASYMMETRIC
SYMMETRIC

NOT LIKE <pattern>
ESCAPE <escape-character>
IGNORE CASE

NOT IN value-expr
(value-expr)

select-expr
,

Language and Syntax Elements 2–129

function-invocation =

<function-name> ()
value-expr
DEFAULT

,

uid-numeric-functions =

UID
CURRENT_UID
SESSION_UID
SYSTEM_UID

length-value-functions =

CHARACTER_LENGTH (char-value-expr)
CHAR_LENGTH
LENGTH
OCTET_LENGTH (value-expr)
LENGTHB
SIZEOF (value-expr)
VSIZE

char-value-expr =

common-value-expr
<string-literal>
user-string-functions
SYS_GUID ()
UPPER (char-value-expr)
LOWER (char-value-expr)
TRANSLATE (char-value-expr USING <translation-name>)

, char-value-expr , char-value-expr)
CONCAT (value-expr , value-expr)
CONCAT_WS
trim-expr
SUBSTRING (char-value-expr FROM

<start-position>)
FOR <string-length>

char-value-expr || char-value-expr

2–130 Language and Syntax Elements

user-string-functions =

USER
CURRENT_USER
SESSION_USER
SYSTEM_USER

trim-expr =

TRIM

(
FROM

BOTH char-value-expr
LEADING
TRAILING

char-value-expr)

date-time-value-expr =

date-time-value-expr + interval-value-expr
-

interval-value-expr + date-time-value-expr
date-time-value-factor

date-time-value-factor =

common-value-expr
date-time-literal
CURRENT_DATE
SYSDATE
SYSTIMESTAMP
LOCALTIME (seconds-precision)
CURRENT_TIME
LOCALTIMESTAMP
CURRENT_TIMESTAMP

Language and Syntax Elements 2–131

date-time-literal =

TIME ’ time-body ’
DATE ’ date-body ’

ANSI
TIMESTAMP ’ date-body time-body ’

date-body : time-body

time-body =

<hours> : <minutes> : <seconds>

. <fractional-seconds>

date-body =

<year> - <month> - <day>

interval-value-expr =

interval-value-factor
+ * numeric-value-expr
- /

numeric-value-expr * interval-value-factor
+
-

interval-value-factor =

interval-literal
common-value-expr
(date-time-value-expr - date-time-value-expr)

interval-qualifier

date-vms-value-expr =

’ <date-vms-string> ’
DATE VMS
common-value-expr

2–132 Language and Syntax Elements

For information regarding date-time data types, see Section 2.3.2.

The rest of this section describes functions, database keys, arithmetic
expressions, and conditional expressions.

2.6.1 NULL Keyword Used as an Expression
The NULL keyword specifies the null value. When assigned to a column of any
data type, the NULL keyword forces the column to be set to null because the
NULL keyword has no data type. For example:

SQL> -- List all employees in the database and all potential employees
SQL> --
SQL> SELECT employee_id, last_name, first_name
cont> FROM employees
cont> UNION
cont> SELECT NULL, last_name, first_name
cont> FROM candidates;

.

.

.
00418 Blount Peter
00435 MacDonald Johanna
00471 Herbener James
NULL Boswick Fred
NULL Schwartz Trixie
NULL Wilson Oscar
103 rows selected

The NULL keyword is distinct from the IS NULL predicate which tests for null
values of an expression. When testing an expression for null, using equality
with NULL (for example, a = NULL) is not productive as it is never true. (See
Table 2–29 and the note following the table.) Use the IS NULL predicate when
testing an expression as shown in the following example:

SQL> SELECT e.last_name, j.job_end
cont> FROM employees e, job_history j
cont> WHERE e.employee_id = j.employee_id
cont> AND j.job_end IS NULL;
E.LAST_NAME J.JOB_END
Smith NULL
O’Sullivan NULL
Hastings NULL
.
.
.

Language and Syntax Elements 2–133

In some cases, the NULL keyword may have a data type of CHAR(31) when
used in a query that requires a data type; such as in arithmetic and character
expressions. In such queries, the assumption of the CHAR data type may
cause an incompatibility error. If this occurs, use the CAST function (for
example, CAST (NULL AS data-type)) to change NULL to a compatible data
type for the query.

2.6.2 Built-In Functions
Built-in functions calculate values based on specified value expressions.
Built-in functions are sometimes called scalar functions.

Table 2–24 describes these functions and the calculated value.

Table 2–24 Built-In Functions

Function Name Calculated Value

ABS Returns absolute value of numeric or interval
value expression.

BITSTRING Extracts selected bits from a binary data
value.

CAST Converts a value expression to another data
type.1

CHARACTER_LENGTH
CHAR_LENGTH
LENGTH

Returns the length, in characters, of a value
expression.

CONCAT (s1,s2,[...,sn]) Returns the concatenated value expressions.

CONCAT_WS (s1,s2,[...,sn]) Returns the concatenated value expression
using the first parameter as a separator
which is applied after each of the other
parameters.

Conditional expressions See Section 2.6.8.

CONVERT (str, dest_char_set) Converts a character string to the specified
character set.

CURRENT_DATE DATE data type value containing year,
month, and day for date ’today’.

CURRENT_TIME TIME data type value containing hour,
minute, and second for time ’now’.

1Applies to all data types except LIST OF BYTE VARYING.

(continued on next page)

2–134 Language and Syntax Elements

Table 2–24 (Cont.) Built-In Functions

Function Name Calculated Value

CURRENT_TIMESTAMP TIMESTAMP data type value containing
year, month, and day for date ’today’ and
hour, minute, and second for time ’now’.

CURRENT_UID Returns a unique integer that represents
the current user. This UID value is based
on the AUTHORIZATION user or role for
the currently executing stored routine, or
the SESSION_USER if there is no current
authorization.

CURRENT_USER Returns the current active user name for a
request.

EXTRACT Extracts a single date-time field from a
date-time value.

LENGTH (str) Returns the length of str in characters.

LENGTHB (str) Returns the length of str in bytes.

LOCALTIME Synonym for CURRENT_TIME

LOCALTIMESTAMP Synonym for CURRENT_TIMESTAMP

LOWER Converts all uppercase characters in a value
expression to lowercase characters.

OCTET_LENGTH
LENGTHB

Returns the length, in octets, of a value
expression.

POSITION Returns a numeric value that indicates the
position of the search string in a source
string.

ROUND (n[,m]) Returns n rounded to m places right of the
decimal point.

SESSION_UID Returns a unique integer that represents the
session user.

SESSION_USER Returns the current active session user
name.

SIGN Returns sign of numeric or interval value
expression.

SIZEOF
VSIZE

Returns the length or storage width of a
value expression of any data type.

(continued on next page)

Language and Syntax Elements 2–135

Table 2–24 (Cont.) Built-In Functions

Function Name Calculated Value

SUBSTRING Returns a portion of a character value
expression.

SYSDATE Synonym for CURRENT_TIMESTAMP.

SYSTIMESTAMP Synonym for CURRENT_TIMESTAMP.

SYS_GET_DIAGNOSTIC Returns session information.

SYS_GUID Returns a globally unique identifier (GUID).

SYSTEM_UID Returns a unique integer that represents the
system user.

SYSTEM_USER Returns the user name of the login process
at the time of the database attach.

TRANSLATE Translates a character value expression
from one character set to another compatible
character set.

TRIM Returns a character string minus a specified
leading or trailing character (or both) of a
value expression.

TRUNC (n[,m]) Returns n truncated to m decimal places.

UID A synonym for CURRENT_UID. UID is
provided for Oracle Database compatibility.

UPPER Converts all lowercase characters in a value
expression to uppercase characters.

USER Specifies the user name of the process that
invokes interactive SQL or runs a program.
USER is a synonym for CURRENT_USER.

The following sections describe these functions in more detail.

2.6.2.1 BITSTRING Function
The BITSTRING function extracts selected bits from a binary data value.
This functionality is primarily intended to query the bit values stored in the
RDB$FLAGS columns in the Rdb system table, but can also be used for user
data.

BITSTRING accepts numeric and date/time values and processes them as bit
arrays. The first (least significant) bit is numbered 1. The most significant bit
depends on the data type.

• TINYINT has 8 bits

• SMALLINT has 16 bits

2–136 Language and Syntax Elements

• INTEGER has 32 bits

• BIGINT, DATE, TIME, TIMESTAMP and INTERVAL types have 64 bits

• The numeric expression after the FOR and FROM keywords must be
unscaled numeric values.

The following notes apply to usage of the BITSTRING function:

• If the numeric expression of the FOR clause is less than equal to zero then
it will be assumed equal to 1.

• If the FOR clause is omitted it will default to a value that includes all
remaining bits of the source value.

• If the FOR clause specifies a larger value than the number of bits
remaining in the source then will only return the remaining bits.

Example: Using the BITSTRING function

Bit 1 in the RDB$FLAGS column of RDB$RELATIONS indicates that the table
is a view. This example uses this query to fetch the names of all user defined
views in the PERSONNEL database.

SQL> select rdb$relation_name
cont> from rdb$relations
cont> where rdb$system_flag = 0 and
cont> bitstring (rdb$flags from 1 for 1) = 1;
RDB$RELATION_NAME
CURRENT_JOB
CURRENT_SALARY
CURRENT_INFO
3 rows selected
SQL>

2.6.2.2 CAST Function
The CAST function converts a value expression to another data type. The
source and target columns can be of any data type except LIST OF BYTE
VARYING.

If you convert to an INTERVAL data type, you must specify a single interval
qualifier field, and the source must be a numeric value (fixed or floating) or a
compatible INTERVAL data type. For information on interval qualifiers, see
Section 2.3.2.

You can also convert from a single interval qualifier field to a numeric type
(fixed or floating).

Language and Syntax Elements 2–137

If you convert a TIMESTAMP literal using the CAST function, SQL puts a
separating space character (SQL92) between the date-body and the time-body
of the TIMESTAMP literal. For more information on TIMESTAMP literals, see
Section 2.4.3.

The CAST function allows you to convert host language variables into date-
time values. You can also use the CAST function to express dates in VMS
format as ANSI format dates (using the syntax CAST(date-vms-value-expr AS
DATE ANSI)) to do date arithmetic using DATE VMS data.

Examples: Using the CAST function

Example 1: Using the CAST function to list the number of months since the
last salary raise in descending order for employees whose salary is above
$50,000

SQL> CREATE VIEW MY_VIEW3
cont> (TODAYS_DATE, SALARY_START, MONTHS_SINCE_RAISE)
cont> AS SELECT CURRENT_DATE, SALARY_START,
cont> EXTRACT(MONTH FROM
cont> (CURRENT_DATE - CAST(SH.SALARY_START AS DATE ANSI)) MONTH)
cont> FROM EMPLOYEES E, SALARY_HISTORY SH
cont> WHERE (E.EMPLOYEE_ID = SH.EMPLOYEE_ID) AND
cont> (SALARY_AMOUNT >= 50000) AND
cont> (SALARY_END IS NULL)
cont> ORDER BY 3 DESC;
SQL> SELECT * FROM MY_VIEW3;
TODAYS_DATE SALARY_START MONTHS_SINCE_RAISE
1993-12-02 12-MAR-1982 00:00:00.00 141
1993-12-02 10-MAR-1982 00:00:00.00 141
1993-12-02 6-APR-1982 00:00:00.00 140
1993-12-02 23-APR-1982 00:00:00.00 140
1993-12-02 18-MAY-1982 00:00:00.00 139
.
.
.

1993-12-02 3-JAN-1983 00:00:00.00 131
1993-12-02 14-JAN-1983 00:00:00.00 131
25 rows selected

Example 2: Using the CAST function to convert average salary information
from scientific notation

2–138 Language and Syntax Elements

SQL> --
SQL> -- First, without CAST, average is returned in floating-point
SQL> -- scientific notation.
SQL> --
SQL> CREATE VIEW MY_VIEW2 (DEPARTMENT_CODE, TOTAL_SALARY,
cont> AVERAGE_SALARY)
cont> AS SELECT DEPARTMENT_CODE, SUM(SALARY_AMOUNT),
cont> AVG(SALARY_AMOUNT)
cont> FROM JOB_HISTORY JH,SALARY_HISTORY SH
cont> WHERE (JH.EMPLOYEE_ID = SH.EMPLOYEE_ID)
cont> AND (JH.JOB_END IS NULL)
cont> AND (SH.SALARY_END IS NULL)
cont> GROUP BY DEPARTMENT_CODE
cont> HAVING SUM (SALARY_AMOUNT) > 100000
cont> ORDER BY 2 DESC, DEPARTMENT_CODE;
SQL> SELECT * FROM MY_VIEW2;
DEPARTMENT_CODE TOTAL_SALARY AVERAGE_SALARY
ADMN 525403.00 7.505757142857143E+004
ELEL 208299.00 2.603737500000000E+004
PHRN 192393.00 3.847860000000000E+004
PERL 158752.00 3.175040000000000E+004
SUWE 157429.00 3.935725000000000E+004
SQL> --
SQL> -- Using CAST, the AVERAGE_SALARY output is converted from scientific
SQL> -- notation to a more readable format.
SQL> --
SQL> CREATE VIEW MY_VIEW2 (DEPARTMENT_CODE, TOTAL_SALARY,
cont> AVERAGE_SALARY)
cont> AS SELECT DEPARTMENT_CODE, SUM(SALARY_AMOUNT),
cont> CAST(AVG(SALARY_AMOUNT) AS BIGINT(2))
cont> FROM JOB_HISTORY JH,SALARY_HISTORY SH
cont> WHERE (JH.EMPLOYEE_ID = SH.EMPLOYEE_ID)
cont> AND (JH.JOB_END IS NULL)
cont> AND (SH.SALARY_END IS NULL)
cont> GROUP BY DEPARTMENT_CODE
cont> HAVING SUM (SALARY_AMOUNT) > 100000
cont> ORDER BY 2 DESC, DEPARTMENT_CODE;
SQL> --
SQL> SELECT * FROM MY_VIEW2;
DEPARTMENT_CODE TOTAL_SALARY AVERAGE_SALARY
ADMN 525403.00 75057.57
ELEL 208299.00 26037.38
PHRN 192393.00 38478.60
PERL 158752.00 31750.40
SUWE 157429.00 39357.25

Language and Syntax Elements 2–139

Example 3: Using the CAST function to convert employee identification
numbers to integers

SQL> SELECT CAST(EMPLOYEE_ID AS INTEGER) FROM EMPLOYEES LIMIT TO 1 ROW;

164
1 row selected

2.6.2.3 CHARACTER_LENGTH Function
The CHARACTER_LENGTH (CHAR_LENGTH or LENGTH) function
calculates the length of a value expression of any data type.

If the result of the value expression is a character data type, the CHARACTER_
LENGTH function returns the length, in characters, of the character string.
(Remember that the length of a character can be one or more octets.) If the
result of the value expression is NULL, the function returns a null value. You
can use CHAR_LENGTH or LENGTH as an alternative for CHARACTER_
LENGTH.

2–140 Language and Syntax Elements

Examples: Using the CHARACTER_LENGTH function

Example 1: Using the CHARACTER_LENGTH function to calculate the
number of characters in the values in CHAR and VARCHAR columns

SQL> -- Because the column LAST_NAME is defined as CHAR(14), a fixed-length
SQL> -- data type, SQL pads the values in the column with blanks. The
SQL> -- following statement returns the same value for all the rows.
SQL> --
SQL> SELECT CHARACTER_LENGTH(LAST_NAME), LAST_NAME
cont> FROM EMPLOYEES LIMIT TO 3 ROWS;

LAST_NAME
14 Ames
14 Andriola
14 Babbin

3 rows selected
SQL> --
SQL> -- Because the column CANDIDATES_STATUS is defined as VARCHAR, a
SQL> -- varying-length data type, SQL does not pad the column with blanks.
SQL> --
SQL> SELECT CHARACTER_LENGTH(CANDIDATE_STATUS) FROM CANDIDATES;

63
69
46

3 rows selected

Example 2: Using the CHARACTER_LENGTH function with multi-octet
character sets

2.6.2.4 CONCAT Function
The CONCAT function returns the concatenated value expressions. The result
is a VARCHAR type large enough to hold all source value expressions.

Language and Syntax Elements 2–141

Any date/time or numeric values are implicitly converted to VARCHAR
types prior to concatenation. For dialects ORACLE LEVEL1 and ORACLE
LEVEL2, any supplied value that is NULL is ignored. For all other dialects,
in conformance with the ANSI and ISO SQL database language standard, the
resulting CONCAT expression is NULL.

CONCAT is functionally equivalent to the concatenation operator (| |).

Example: Using the CONCAT function

SQL> select distinct CONCAT (e.last_name, ’ has a ’, d.degree, ’ degree’)
cont> from employees e, degrees d
cont> where e.employee_id = d.employee_id
cont> limit to 5 ROWS;

Ames has a MA degree
Ames has a PhD degree
Andriola has a MA degree
Andriola has a PhD degree
Babbin has a MA degree
5 rows selected

2.6.2.5 CONCAT_WS Function
The CONCAT_WS function returns the concatenated value expression using
the first parameter as a separator which is applied after each of the other
parameters.

If the separator value expression resolves to NULL then the result of
CONCAT_WS will be NULL. If any other parameter value expression resolves
to NULL then it will be ignored. That is, that column value and any separator
will not be included in the output.

The function CONCAT_WS accepts all data types with the exception of LIST
OF BYTE VARYING, LONG, and LONG RAW. Each non-character string value
will be implicitly converted to VARCHAR with a size appropriate for the data
type.

The result of this function will have the type VARCHAR with a length long
enough for the concatenated data and separators.

If dialect ORACLE LEVEL1 or ORACLE LEVEL2 is used then zero length
strings (’’) will be considered as NULL and so be excluded from the output. If
the resulting value is a zero length string then the result of CONCAT_WS will
be NULL.

2–142 Language and Syntax Elements

Example: Using the CONCAT_WS function to simplify the formatting of table
data in CSV (comma separated value) format.

SQL> select ’"’ ||
cont> CONCAT_WS (’", "’, first_name, nvl(middle_initial,’’), last_name)
cont> || ’"’
cont> from employees
cont> order by employee_id;

"Alvin ", "A", "Toliver "
"Terry ", "D", "Smith "
"Rick ", "", "Dietrich "
"Janet ", "", "Kilpatrick "
. . .
"Peter ", "", "Blount "
"Johanna ", "P", "MacDonald "
"James ", "Q", "Herbener "
100 rows selected
SQL>

2.6.2.6 CONVERT Function
The CONVERT function converts a character string to the specified character
set.

You cannot specify the source character set as you can with Oracle. The
destination character set must be a character set supported by Oracle Rdb.

The CONVERT function is functionally equivalent to the TRANSLATE...USING
function.

Example: Using the CONVERT function

SQL> SELECT CONVERT (english, RDB$SHIFT_JIS)
cont> FROM colours;

Black
White
Blue
Red
Yellow
Green
6 rows selected

Language and Syntax Elements 2–143

2.6.2.7 CURRENT_DATE Function
The CURRENT_DATE function returns a DATE data type value (ANSI format)
containing year, month, and day for date ’today’. You can specify an optional
fractional-seconds precision for CURRENT_DATE.

Example: Using the CURRENT_DATE function

The following example shows how a site with an Oracle Rdb database might
use the CURRENT_DATE function to determine employee ages. You must
use the CAST function to convert the DATE column BIRTHDAY from VMS to
ANSI format to use it with the ANSI format CURRENT_DATE function.

SQL> ATTACH FILENAME ’corporate_data’;
SQL> SET SCHEMA ’ADMINISTRATION.PERSONNEL’;
SQL> CREATE VIEW AGE (LAST_NAME, FIRST_NAME, BIRTHDAY, AGE)
cont> AS SELECT LAST_NAME, FIRST_NAME, BIRTHDAY,
cont> (CURRENT_DATE - CAST(BIRTHDAY AS DATE ANSI)) YEAR TO MONTH
cont> FROM EMPLOYEES ORDER BY BIRTHDAY ASC LIMIT TO 10 ROWS;
SQL> --
SQL> -- A SELECT statement displays the ten oldest employees.
SQL> SELECT * FROM AGE;
LAST NAME FIRST_NAME BIRTHDAY AGE
O’Sullivan Rick 12-Jan-1923 68-06
Clairmont Rick 23-Dec-1924 66-07
Nash Walter 19-Jan-1925 66-06
Kinmonth Louis 7-Apr-1926 65-03
Bartlett Dean 5-Mar-1927 64-06
Johnson Bill 13-Apr-1927 64-03
Herbener James 28-Oct-1927 63-09
Babbin Joseph 12-Dec-1927 63-07
Ziemke Al 27-Oct-1928 62-09
Reitchel Charles 13-Dec-1928 62-07
10 rows selected
SQL>

2.6.2.8 CURRENT_TIME and LOCALTIME Functions
The CURRENT_TIME function returns a TIME data type value containing
hours, minutes, and seconds for time ’now’.

You can specify a fractional precision between 0 and 2 for the seconds returned
by CURRENT_TIME. The fractional-seconds precision is a number that
designates the number of digits returned in the field. For example, a fractional
precision of 2 means that seconds are returned as hundredths of a second (2
digits beyond the decimal point), while a fractional precision of 1 means that
only tenths of a second are returned (1 digit beyond the decimal point).

2–144 Language and Syntax Elements

Example 1: The following example shows how to create a domain of data type
TIME and insert the CURRENT_TIME into the column:

SQL> CREATE DOMAIN END_TIME_DOM IS TIME;
SQL> CREATE TABLE HOURS_WORKED (END_TIME END_TIME_DOM);
SQL> INSERT INTO HOURS_WORKED (END_TIME) VALUES (CURRENT_TIME);
1 row inserted
SQL> SELECT * FROM HOURS_WORKED;
END_TIME
15:03:07
1 row selected

You can specify a current default for a time or timestamp field with nondefault
fractional-seconds precision, as shown in the following example:

Example 2: In this example, an error results when the user specifies a
fractional-seconds precision different from the current default:

SQL> CREATE DOMAIN Y TIME(2) DEFAULT CURRENT_TIME(1);
%SQL-F-DEFVALINC, You specified a default value for Y which is
inconsistent with its data type
SQL> CREATE DOMAIN Y TIME(1) DEFAULT CURRENT_TIME(1);

The LOCALTIME built-in function is a synonym for CURRENT_TIME, and is
defined by the SQL:1999 database language standard.

2.6.2.9 CURRENT_TIMESTAMP and LOCALTIMESTAMP Functions
The CURRENT_TIMESTAMP function returns a TIMESTAMP data type value
containing year, month, and, day for date ’today’ and hours, minutes, and
seconds for time ’now’.

As in CURRENT_TIME, you can specify a fractional precision between 0 and
2 for the seconds returned by CURRENT_TIMESTAMP. The fractional-seconds
precision is a number that designates the number of digits returned in the
field.

The CURRENT_TIMESTAMP data type can be either DATE VMS or DATE
ANSI format. Date-time arithmetic is not allowed with DATE VMS columns.
A DATE VMS format CURRENT_TIMESTAMP specifies the day, month, and
year of the current date and the hours, minutes, and seconds of the current
time. A DATE ANSI format CURRENT_TIMESTAMP specifies the year, month
and day of the current date, followed by the hours, minutes, and seconds of the
current time.

The LOCALTIMESTAMP built-in function is a synonym for CURRENT_
TIMESTAMP and is defined by the SQL:1999 database language standard.

Language and Syntax Elements 2–145

Examples: Using the CURRENT_TIMESTAMP function

Example 1: In the following example, SQL fills in a value for CURRENT_
TIMESTAMP every time an INSERT statement is executed on ORDER_
TABLE2:

SQL> CREATE DOMAIN LOGGING_DATE TIMESTAMP(1) DEFAULT CURRENT_TIMESTAMP(1);
SQL> CREATE TABLE ORDER_TABLE2
cont> (PART_NUM INT,
cont> ORDER_LOGGED LOGGING_DATE,
cont> DELIVERY_DATE TIMESTAMP(1),
cont> TIME_TO_DELIVER
cont> COMPUTED BY (DELIVERY_DATE - ORDER_LOGGED) DAY(6) TO MINUTE,
cont> SLOW_DELIVERY
cont> COMPUTED BY (EXTRACT(DAY FROM
cont> (DELIVERY_DATE - ORDER_LOGGED) DAY(6)) - 30)
cont>);

Example 2: In the following example, SQL issues an error message because
the CURRENT_TIMESTAMP data type uses the VMS format by default, and
the TIMESTAMP data type uses the ANSI format:

SQL> CREATE DOMAIN LOGGING_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP;
%SQL-F-DEFVALINC, You specified a default value for LOGGING_DATE which is
inconsistent with its data type

SQL provides several ways to change DATE and CURRENT_TIMESTAMP
data to ANSI format:

The statement SET DIALECT ’SQL99’

The statement SET DEFAULT DATE FORMAT

The precompiler DEFAULT DATE FORMAT clause in a DECLARE
MODULE statement embedded in a program

The module language DEFAULT DATE FORMAT clause in a module file

Example 3: The following example shows the DATE VMS and DATE ANSI
output formats for CURRENT_TIMESTAMP:

SQL> ATTACH ’FILENAME corporate_data’;
SQL> SHOW ANSI DATE
DATE data type equates to DATE VMS
SQL> SELECT CURRENT_TIMESTAMP FROM DAILY_HOURS LIMIT TO 1 ROW;

15-AUG-1991 10:40:52.83
1 row selected
SQL> SET DEFAULT DATE FORMAT ’SQL99’;
SQL> SHOW ANSI DATE
DATE data type equates to DATE ANSI
SQL> SELECT CURRENT_TIMESTAMP FROM DAILY_HOURS LIMIT TO 1 ROW;

2–146 Language and Syntax Elements

1991-08-15 10:41:02.52
1 row selected

You must use the SET DEFAULT DATE FORMAT statement before creating
domains or tables. You cannot use this statement to modify the data type after
you created a database definition.

The CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP
keywords are accessible from anywhere that an expression is allowed in Oracle
Rdb.

Example 4: The following is an example of an SQL statement that inserts the
date into the JOB_START column of a JOB_HISTORY table:

SQL> INSERT INTO JOB_HISTORY (JOB_START . . .)
cont> VALUES (CURRENT_TIMESTAMP, . . .);

If you use the CURRENT_DATE, CURRENT_TIME, or CURRENT_
TIMESTAMP keyword more than once within a statement, it retains the
same value for the date and time.

Example 5: This query requires that the difference of absolute dates be
calculated and the year component is then selected (and printed) from the
calculated interval:

SQL> SELECT FIRST_NAME, LAST_NAME, ’ is ’,
cont> EXTRACT(YEAR FROM (CURRENT_TIMESTAMP - BIRTHDAY) YEAR),
cont> ’ years old’
cont> FROM EMPLOYEES;

Example 6: The trigger in the following example records a history of updates
to the EMPLOYEES table. The HISTORY table in the example contains the
date and time of any updates to table rows containing employee birthdays,
the name of the user making the updates, and the employee ID number of the
updated rows:

SQL> -- Create a new table for the trigger.
SQL> CREATE TABLE HISTORY
cont> ("DATE" DATE,
cont> USER_NAME CHAR(14),
cont> UPDATED_ID CHAR(5));
SQL> --
SQL> CREATE TRIGGER EMP_UPD_TRIG AFTER UPDATE ON EMPLOYEES
cont> (INSERT INTO HISTORY ("DATE", USER_NAME, UPDATED_ID)
cont> VALUES (CURRENT_DATE, USER, EMPLOYEE_ID))
cont> FOR EACH ROW;

In general, all triggers executed as part of a statement receive the same
timestamp. The timestamp is the time that the statement is executed.

Language and Syntax Elements 2–147

Example 7: You can also set the date to correspond to the DEFAULT clause of
the CURRENT_TIMESTAMP keyword. In that case, SQL fills in a value for
CURRENT_TIMESTAMP every time an INSERT statement is executed:

SQL> CREATE TABLE TIMESTAMP_TABLE
cont> (LOG_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
cont> USER_NAME CHAR(14) DEFAULT USER,
cont> UPDATED_ID CHAR(5));
SQL> --
SQL> CREATE TRIGGER EMP_UPD_TRIG AFTER UPDATE ON EMPLOYEES
cont> (INSERT INTO HISTORY (UPDATED_ID)
cont> VALUES (EMPLOYEE_ID))
cont> FOR EACH ROW;

2.6.2.10 CURRENT_UID Function
The CURRENT_UID function returns a unique integer that represents the
current user. This UID value is based on the AUTHORIZATION user or role
for the currently executing stored routine, or the SESSION_USER if there is
no current authorization.

2.6.2.11 CURRENT_USER Function
The CURRENT_USER function returns the current active user name for a
request.

If a definer’s rights request is executing, the CURRENT_USER function
returns the rights identifier of the module definer. If a definer’s rights request
is not executing, CURRENT_USER returns the session user name, if it exists.
Otherwise, CURRENT_USER returns the system user name. See Section 2.2.2
for more information.

The resulting data type is CHAR(31).

The CURRENT_USER function does not return the definer’s user name of a
trigger.

Example: Using the CURRENT_USER function

Example 1: To allow users access only to the rows they inserted, create a view

SQL> CREATE VIEW SELECTIVE_EMPLOYEES_UPDATE AS
cont> SELECT * FROM EMPLOYEES
cont> WHERE USER_ID = CURRENT_USER
cont> WITH CHECK OPTION CONSTRAINT MUST_HAVE_USER;

2–148 Language and Syntax Elements

2.6.2.12 EXTRACT Function
The EXTRACT function returns a single date-time field expressed as an integer
from a column of data type DATE, TIME, TIMESTAMP, or INTERVAL.

The date-time fields that EXTRACT can return are:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

• WEEKDAY

• JULIAN

• WEEK_NUMBER

• YEAR_WEEK

The data type returned is a signed longword of scale 0, unless the date-time
field is SECOND. If the SECOND field is selected, then the scale is set to 2.

If you specify WEEKDAY, you can only use the data types TIMESTAMP and
DATE as the extract source. In all other cases, the extract source can be data
type DATE, TIME, TIMESTAMP, or INTERVAL. If you specify WEEKDAY,
then the EXTRACT function returns an integer representing the day of the
week. (Monday is represented as day 1, Sunday as day 7.)

If the EXTRACT function is applied to a null value, it returns a null value.

The number of days since the first day of a year, called the Julian date, can
be an important integer value to which programmers need direct access. The
SQL EXTRACT function lets you determine the Julian date from column data
defined with date-time data types.

The JULIAN keyword requires that the extract expression resolve to either the
DATE ANSI or TIMESTAMP date-time data type. Value expressions that do
not resolve to one of these particular data types will fail. For example, trying
to extract the Julian date from an expression defined by the CURRENT_TIME
data type results in the following SQL error message:

Language and Syntax Elements 2–149

SQL> SELECT EXTRACT(JULIAN FROM CURRENT_TIME) FROM ACCOUNTING.DAILY_HOURS;
%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-EXT_JULIAN_TS, invalid type for EXTRACT JULIAN, must be DATE or
TIMESTAMP
SQL>

You cannot represent dates from the year 1858 using the JULIAN keyword in
the EXTRACT function because JULIAN calculates from 1-January and the
first date in 1858 is 18-November.

The options WEEK_NUMBER and YEAR_WEEK return the week number
as defined by the International Standard ISO 8601:1988 "Data elements and
interchange formats - Information interchange - Representation of dates and
times".

WEEK_NUMBER is a number between 1 and 53 representing the week of the
year (most years only have 52 weeks). A week starts on Monday and has most
of its days falling in a specific year.

YEAR_WEEK is a variation of the WEEK_NUMBER that includes the year
(including the century) in which the week logically falls. The values range from
185901 through 999952 (higher values are possible if dates are constructed
with a year beyond 9999). The last two digits of the value are identical to the
value returned by the WEEK_NUMBER option.

Examples: Using the EXTRACT function

Example 1: Using the EXTRACT function to find the employee with the longest
record of service who is still employed by the company

SQL> CREATE VIEW MY_VIEW2
cont> (LAST_NAME, TODAYS_DATE, JOB_START, MONTHS_EMPLOYED)
cont> AS SELECT E.LAST_NAME, CURRENT_DATE, JH.JOB_START,
cont> EXTRACT (MONTH FROM
cont> (CURRENT_DATE - CAST(JH.JOB_START AS DATE ANSI)) MONTH)
cont> FROM EMPLOYEES E, JOB_HISTORY JH
cont> WHERE E.EMPLOYEE_ID = JH.EMPLOYEE_ID
cont> AND
cont> (CURRENT_DATE - CAST(JH.JOB_START AS DATE ANSI)) MONTH =
cont> (SELECT
cont> MAX ((CURRENT_DATE - CAST (JH.JOB_START AS DATE ANSI)) MONTH)
cont> FROM JOB_HISTORY JH);

2–150 Language and Syntax Elements

SQL> SELECT * FROM MY_VIEW2;
LAST_NAME TODAYS_DATE JOB_START MONTHS_EMPLOYED
Smith 1993-12-02 1-JUL-1975 00:00:00.00 221
Nash 1993-12-02 1-JUL-1975 00:00:00.00 221
Gray 1993-12-02 1-JUL-1975 00:00:00.00 221
Peters 1993-12-02 1-JUL-1975 00:00:00.00 221
.
.
.

Ames 1993-12-02 1-JUL-1975 00:00:00.00 221
Blount 1993-12-02 1-JUL-1975 00:00:00.00 221
43 rows selected

Example 2: Using the EXTRACT function to compute when ordered items are
overdue

SQL> SET DEFAULT DATE FORMAT ’SQL92’;
SQL> CREATE DOMAIN LOGGING_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP;
SQL> CREATE TABLE ORDER_TABLE
cont> (ORDER_NUMBER INT,
cont> COMPANY_NAME VARCHAR(40),
cont> ORDER_LOGGED LOGGING_DATE,
cont> DELIVERY_DATE DATE ANSI,
cont> TIME_TO_DELIVER
cont> COMPUTED BY (DELIVERY_DATE - ORDER_LOGGED) DAY(3) TO MINUTE.
cont> SLOW_DELIVERY
cont> COMPUTED BY (EXTRACT(DAY FROM (DELIVERY_DATE - ORDER_LOGGED)
cont> DAY) - 30));
SQL> INSERT INTO ORDER_TABLE
cont> (ORDER_NUMBER,
cont> COMPANY_NAME,
cont> ORDER_LOGGED,
cont> DELIVERY_DATE)
cont>VALUES
cont> (1,
cont> ’ABC INC.’,
cont> TIMESTAMP ’1991-2-4 10:30:00.00’,
cont> DATE ’1991-6-1’
cont>);
1 row inserted
SQL> --
SQL> INSERT INTO ORDER_TABLE
cont> (ORDER_NUMBER,
cont> COMPANY_NAME,
cont> DELIVERY_DATE)
cont> VALUES
cont> (2,
cont> ’JJ ROOFING’,
cont> DATE ’1991-5-1’
cont>);
1 row inserted
SQL> --

Language and Syntax Elements 2–151

SQL> SELECT ORDER_NUMBER, ORDER_LOGGED, DELIVERY_DATE FROM ORDER_TABLE;
ORDER_NUMBER ORDER_LOGGED DELIVERY_DATE

1 1991-02-04 10:30:00.000000 1991-06-01
2 1991-04-18 09:06:05.630000 1991-05-01

2 rows selected
SQL> --
SQL> SELECT TIME_TO_DELIVER, SLOW_DELIVERY FROM ORDER TABLE
cont> WHERE SLOW_DELIVERY >= 0;
TIME_TO_DELIVER SLOW_DELIVERY
116:13:30 86

1 row selected
SQL> --
SQL> SELECT COMPANY_NAME,EXTRACT(WEEKDAY FROM ORDER_LOGGED) FROM ORDER_TABLE;
COMPANY_NAME
ABC INC. 1
JJ ROOFING 4
2 rows selected

Example 3: Calculating the Julian date with the EXTRACT function

SQL> -- Attach to the multischema database corporate_data and define
SQL> -- a default catalog and schema setting.
SQL> --
SQL> ATTACH ’FILENAME corporate_data’;
SQL> SET CATALOG ’ADMINISTRATION’;
SQL> SET SCHEMA ’PERSONNEL’;
SQL> --
SQL> -- Create view to show column heads for SELECT statement. The EXTRACT
SQL> -- function using the new JULIAN keyword calculates the Julian date
SQL> -- of an employee’s birthday.
SQL> --
SQL> CREATE VIEW JULIAN_YEAR
cont> (LAST_NAME, EMPLOYEE_ID, BIRTHDAY, JULIAN_DATE)
cont> AS SELECT LAST_NAME, EMPLOYEE_ID, BIRTHDAY,
cont> EXTRACT(JULIAN FROM BIRTHDAY)
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00415’;
SQL> SELECT * FROM JULIAN_YEAR;
LAST_NAME EMPLOYEE_ID BIRTHDAY JULIAN_DATE
Mistretta 00415 1947-05-23 143
1 row selected
SQL> ROLLBACK;

The Julian date 143 represents the number of days from January 1, 1947 to
May 23, 1947. (The EXTRACT function would have returned the Julian date
144 if the employee was born on the same day in the leap year of 1948.) You
can try this example using the corporate_data multischema database from the
Samples directory.

2–152 Language and Syntax Elements

Example 4: Using the EXTRACT function with YEAR_NUMBER and YEAR_
WEEK.

SQL> select dt,
cont> extract (week_number from dt),
cont> extract (year_week from dt)
cont> from week_sample
cont> order by dt;
DT
1859-01-07 1 185901
1999-01-01 53 199853
1999-01-04 1 199901
1999-01-10 1 199901
1999-12-31 52 199952
2000-01-01 52 199952
2000-01-03 1 200001
2000-02-28 9 200009
2000-02-29 9 200009
2000-03-01 9 200009
9999-12-31 52 999952
11 rows selected

2.6.2.13 LENGTH Function
The LENGTH function returns the length of a supplied string in characters.
Also see the CHARACTER_LENGTH function.

2.6.2.14 LENGTHB Function
The LENGTHB function returns the length of a supplied string in bytes. Also
see the OCTET_LENGTH function.

2.6.2.15 LOWER Function
The LOWER function converts all uppercase characters in a value expression
to lowercase characters. This function is useful to maintain consistency in
value expressions in the database.

If the result of the value expression is NULL, the function returns a null value.

Example: Using the LOWER function

Use the LOWER function to convert the uppercase characters in DEPARTMENT_
NAME to lowercase characters:

Language and Syntax Elements 2–153

SQL> SELECT DEPARTMENT_NAME, LOWER(DEPARTMENT_NAME)
cont> FROM DEPARTMENTS
cont> LIMIT TO 3 ROWS;
DEPARTMENT_NAME
Corporate Administration corporate administration
Electronics Engineering electronics engineering
Large Systems Engineering large systems engineering
3 rows selected
SQL>

When you use the LOWER function, SQL follows the rules of the character
set for the value expression when converting characters to lowercase. For
example, if the character set of the value expression is Hanzi and ASCII, SQL
converts only the ASCII characters to lowercase. It does not convert the Hanzi
characters.

2.6.2.16 OCTET_LENGTH Function
The OCTET_LENGTH (or LENGTHB) function calculates the length, in octets,
of a value expression of any data type.

If the result of the value expression is NULL, the function returns a null value.
Otherwise, the function returns the length, in octets, of the value expression.
You can use LENGTHB as an alternative for OCTET_LENGTH.

Examples: Using the OCTET_LENGTH function

Example 1: Using the OCTET_LENGTH function to calculate the number of
characters in the values in CHAR and VARCHAR columns

SQL> -- This example uses the personnel sample database.
SQL> -- Because the column LAST_NAME is defined as CHAR(14), a fixed-length
SQL> -- data type, SQL pads the values in the column with blanks. The
SQL> -- following statement returns the same value for all the rows.
SQL> --
SQL> SELECT OCTET_LENGTH (LAST_NAME), LAST_NAME
cont> FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

LAST_NAME
14 Ames
14 Andriola
14 Babbin

3 rows selected
SQL> --
SQL> -- Because the column CANDIDATE_STATUS is defined as VARCHAR(255), a
SQL> -- varying-length data type, SQL does not pad the column with blanks.
SQL> --
SQL> SELECT OCTET_LENGTH (CANDIDATE_STATUS) FROM CANDIDATES;

2–154 Language and Syntax Elements

63
69
46

3 rows selected
SQL>

Language and Syntax Elements 2–155

Example 2: Using the OCTET_LENGTH function with multi-octet character
sets

2.6.2.17 POSITION Function
The POSITION function searches for a string in a character value expression.
The first character value expression is also called a search string. The second
character value expression is also called a source string. If the search string
is located, the POSITION function returns a numeric value that indicates the
position of the search string in the source string. The returned numeric value
is the absolute position of the search string in the source string starting with
1. The match between the search string and the source string is case sensitive.

If the search string is not found in the source string, the POSITION function
returns a zero (0) value. If any of the strings is NULL, the result is NULL.

The FROM clause of the POSITION function is an extension to the ANSI/ISO
SQL standard and allows searching to begin from any location.

Examples: Using the POSITION function

Example 1: Using the POSITION function in a SELECT statement

SQL> SELECT COLLEGE_NAME,
cont> POSITION (’University’ IN COLLEGE_NAME)
cont> FROM COLLEGES
cont> WHERE COLLEGE_NAME LIKE ’_%University%’;
COLLEGE_NAME
American University 10
Drew University 6
Harvard University 9
Purdue University 8
Stanford University 10
Yale University 6
6 rows selected

2–156 Language and Syntax Elements

Example 2: Using the POSITION function with the SUBSTRING clause

SQL> SELECT SUBSTRING (COLLEGE_NAME FROM 1 FOR
cont> POSITION (’University’ IN COLLEGE_NAME) -1)
cont> FROM COLLEGES
cont> WHERE COLLEGE_NAME LIKE ’_%University%’;

American
Drew
Harvard
Purdue
Stanford
Yale
6 rows selected

Example 3: Using the POSITION function to find individual words. Because
this example uses the TRACE statement, you must define the RDMS$DEBUG_
FLAGS logical name to "Xt".

SQL> BEGIN
cont> DECLARE :TXT VARCHAR(100);
cont> DECLARE :RES VARCHAR(20);
cont> DECLARE :ST, :EN INTEGER;
cont> --
cont> SET :TXT = ’Some words and phrases’;
cont> --
cont> -- Start at the beginning
cont> --
cont> SET :ST = 1;
cont> --
cont> -- Loop over all the text looking for space delimiters
cont> --
cont> WHILE :ST <= CHAR_LENGTH(:TXT)
cont> LOOP
cont> SET :EN = POSITION (’ ’ IN :TXT FROM :ST);
cont> IF :EN = 0 THEN
cont> --
cont> -- No trailing spaces, so assume space after last character
cont> --
cont> SET :EN = CHAR_LENGTH(:TXT) + 1;
cont> END IF;
cont> SET :RES = SUBSTRING(:TXT FROM :ST FOR :EN - :ST);
cont> IF CHAR_LENGTH (TRIM (:RES)) > 0 THEN
cont> --
cont> -- Have a word to display
cont> --
cont> TRACE ’Word: "’, :RES, ’"’;
cont> END IF;
cont> --
cont> -- Advance the start position
cont> --
cont> SET :ST = :EN + 1;

Language and Syntax Elements 2–157

cont> END LOOP;
cont> END;
~Xt: Word: "Some "
~Xt: Word: "words "
~Xt: Word: "and "
~Xt: Word: "phrases "

2.6.2.18 ROUND Function
The ROUND function accepts two numeric value expressions (n,m) as
arguments. The result is the first value expression n rounded to m places
to the right of the decimal point. The value expression m can be negative to
round off digits to the left of the decimal point. The data type of m must be
an unscaled numeric value (tinyint, smallint, integer, or bigint). If omitted, m
defaults to zero. See the following example.

SQL> select avg (salary_amount)
cont> from salary_history
cont> where employee_id = ’00164’;

3.857350000000000E+004
1 row selected

SQL> select round (avg (salary_amount)) as SAL edit using ’sz(9).99’
cont> from salary_history
cont> where employee_id = ’00164’;

SAL
38574.00

1 row selected

Usage Notes

• The function ROUND for numeric values is supported as a native function
in Oracle Rdb.

• Fixed point values are truncated and rounded correctly. Floating values,
while supported by ROUND, may not always return the expected results.
Please review usage of ROUND in such contexts.

• The result type for ROUND will match the data type of the input source
parameter.

• The implementation of ROUND for DATE values requires the use of the
OCI Services for Rdb library (also know as SQL*net for Rdb). These
functions will now accept DATE ANSI, TIMESTAMP and DATE VMS
values.

2–158 Language and Syntax Elements

• Attempts to use ROUND on a database that is not setup for OCI Services
will receive errors similar to these:

SQL> select TRUNC (current_date) from rdb$database;
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - TRUN2
SQL> select ROUND (current_date) from rdb$database;
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - ROUN2

Note

The special functions ROUN2 and TRUN2 are internal routines to deal
with DATE types.

• ROUND supports the data types REAL, FLOAT and DOUBLE PRECISION
for both parameter and results. However, due to the imprecise nature of
floating point arithmetic this may cause unexpected results. A value
such as 4.185 will not round to 4.19 as expected because the internal
(and approximate) representation of the number is something like
4.184999942780E+000 and therefore does not appear to require rounding
to the second decimal place according to the rounding rules.

The following example shows this problem.

SQL> select cast(round (4.185,2) as integer(2)) from rdb$database;

4.18
1 row selected
SQL> select cast(round (4.175,2) as integer(2)) from rdb$database;

4.18
1 row selected
SQL>

Note

The result of a divide operation (/) or the AVG, STDDEV, VARIANCE
statistical functions are floating point values, so applying TRUNC or
ROUND to those results, even if performed on integer sources, will also
be affected by the intermediate floating point type.

• If you use SQL to access older versions of Rdb (such as via remote access)
then SQL will revert to the previous behavior and use the SQL functions
provided by the SQL_FUNCTIONS library.

Language and Syntax Elements 2–159

2.6.2.19 SESSION_UID Function
Returns a unique integer that represents the session user.

2.6.2.20 SESSION_USER Function
The SESSION_USER function returns the current active session user name.

If the session user name is not returned, the system user name is returned.
The resulting data type is CHAR(31).

2.6.2.21 SIZEOF Function
The SIZEOF (or VSIZE) function calculates the maximum length, in octets, of
a value expression of any data type. It returns the length or storage width of
the value expression. Like OCTET_LENGTH, SIZEOF returns the number of
eight-bit units (octets) rather than the number of characters if the expression
yields a text string in a multi-byte character set. You can use VSIZE as an
alternative for SIZEOF.

Examples: Using the SIZEOF function

Example 1: Using the SIZEOF function to calculate the number of maximum
length of CHAR columns.

This example uses the personnel sample database. The column LAST_NAME
is defined as CHAR(14), a fixed-length data type for which SQL pads the values
in the column with blanks. The following statement returns the same value as
if OCTET_LENGTH had been used in lieu of SIZEOF.

SQL> SELECT SIZEOF (LAST_NAME), LAST_NAME
cont> FROM EMPLOYEES
cont> LIMIT TO 3 ROWS;

LAST_NAME
14 Ames
14 Andriola
14 Babbin

3 rows selected

Example 2: Using the SIZEOF function to calculate the number of maximum
length of VARCHAR columns.

The column CANDIDATE_STATUS is defined as VARCHAR(255), a varying-
length data type for which SQL does not pad the column with blanks. Because
SIZEOF returns the maximum size (storage width) of the expression, it returns
the same value (255) for all rows. This is in contrast with OCTET_LENGTH,
which returns the actual size of the data in each row.

2–160 Language and Syntax Elements

SQL> SELECT SIZEOF (CANDIDATE_STATUS) FROM CANDIDATES;

255
255
255

3 rows selected

Example 3: Using the SIZEOF function for non-textual expressions.

This example uses the personnel sample database.

In the first query, the column BIRTHDAY is defined as DATE VMS which
is an an eight-byte datatype. SQL formats the date for display using more
than eight characters but the underlying datatype has a storage width of eight
bytes. The numeric literal 1 is stored internally using an INTEGER which is
four bytes.

In the second query, the column BUDGET_ACTUAL is an INTEGER, a four-
byte datatype. Even though all the values of BUDGET_ACTUAL are NULL
in the selected rows, SIZEOF still returns the storage width of the column.
The numeric literal "99999999999.1" is stored internally as a BIGINT(1), an
eight-byte datatype.

SQL> SELECT BIRTHDAY, SIZEOF(BIRTHDAY), 1, SIZEOF(1),
cont> FROM EMPLOYEES LIMIT TO 3 ROWS;
BIRTHDAY
28-Mar-1947 8 1 4
15-May-1954 8 1 4
20-Mar-1954 8 1 4
3 rows selected
SQL> --
SQL> SELECT BUDGET_ACTUAL, SIZEOF(BUDGET_ACTUAL),
cont> 99999999999.1, SIZEOF(99999999999.1)
cont> FROM DEPARTMENTS LIMIT TO 3 ROWS;
BUDGET_ACTUAL

NULL 4 99999999999.1 8
NULL 4 99999999999.1 8
NULL 4 99999999999.1 8

3 rows selected

2.6.2.22 SUBSTRING Function
Substrings return portions of character value expressions. A substring must
have the data type CHAR, VARCHAR, LONG VARCHAR, NCHAR, or NCHAR
VARYING.

To specify a substring, you must specify the value expression and the FROM
keyword, followed by the start position of the value expression. (The first
character in the string occupies position 1.) You can optionally add a FOR
clause after the FROM clause to specify the length of the value expression
after the start position.

Language and Syntax Elements 2–161

The start position and string length values can be a numeric value expression.
By default, SQL expects the start position and the string length to be specified
in octets. You can use the SET DIALECT or the SET CHARACTER LENGTH
statements or the DIALECT or CHARACTER LENGTH clause of the SQL
module language header and DECLARE MODULE statement to specify
whether the length value is octets or characters.

If you specify a length longer than the string, SQL returns only valid
characters in the string and terminates the returned substring after the
last valid character.

If either operand of the substring is a null value, the resulting value is also
null.

Example: Using SUBSTRING

The following example uses a substring in the WHERE clause of a SELECT
statement.

One of the SELECT statement conditions is that 4 characters starting at
position 9 must equal the string ’Math’, which is extracted using the substring
feature.

SQL> SELECT * FROM DEGREES
cont> WHERE SUBSTRING(DEGREE_FIELD FROM 9 FOR 4) = ’Math’
cont> AND YEAR_GIVEN > 1980;
EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
00167 CALT 1982 MA Applied Math
00168 CALT 1983 PhD Applied Math
00169 MIT 1981 PhD Applied Math
00171 QUIN 1982 MA Applied Math
00176 USCA 1982 MA Applied Math
00212 PRDU 1983 MA Applied Math
00220 DREW 1982 MA Applied Math
00227 PRDU 1981 MA Applied Math
00234 CALT 1981 PhD Applied Math
00242 PRDU 1982 PhD Applied Math
00243 HVDU 1981 MA Applied Math
00374 STAN 1982 MA Applied Math
00405 MIT 1982 PhD Applied Math
00415 MIT 1982 PhD Applied Math
00418 CALT 1982 PhD Applied Math
15 rows selected

When you use a substring with the equal (=) conditional operator, the
operation is case sensitive.

2–162 Language and Syntax Elements

2.6.2.23 SYS_GET_DIAGNOSTIC Function
The SYS_GET_DIAGNOSTIC function returns the same session information
available to the GET DIAGNOSTICS statement. This function provides a
shorthand method of fetching values without requiring a compound statement,
or an intermediate variable.

Syntax: SYS_GET_DIAGNOSTIC (statement-item-name)

For the list of keywords acceptable by this function please see the statement-
item-name syntax under the GET DIAGNOSTICS statement.

Each keyword used with SYS_GET_DIAGNOSTIC will cause the result to
have a different associated data type. Please refer to the GET DIAGNOSTICS
statement for the returned data types.

The following example shows the return of session information.

SQL> select SYS_GET_DIAGNOSTIC (CONNECTION_NAME) as CONN,
cont> SYS_GET_DIAGNOSTIC (SERVER_IDENTIFICATION) as IDENT,
cont> SYS_GET_DIAGNOSTIC (DATABASE_HANDLE) as DBHANDLE
cont> from GET_DIAG;
CONN IDENT DBHANDLE
RDB$DEFAULT_CONNECTION Oracle Rdb V7.2-501 1
1 row selected
SQL>

2.6.2.24 SYS_GUID Function
The SYS_GUID function returns a 16 octet globally unique identifier.
Applications would use this to provide unique values from various applications
and across databases in an OpenVMS cluster or network.

This function uses the OpenVMS system service SYS$CREATE_UID.
Applications that call this system service create compatible values for Rdb.

The returned value from SYS_GUID() may contain octets that are zero. If
returning values to C applications, then Oracle recommends using the $SQL_
VARCHAR pseudo type to avoid C null terminated string semantics.

The SYS_GUID() returns data using a special character set. This special
character set is used by Oracle Rdb to distinguish this type of string from
others. Interactive SQL will format the value using standard OpenVMS
formatting services when this character set is seen. Note that these services
perform reordering of the octet values during formatting, that is, the value
isn’t a direct hexadecimal representation of the value.

Language and Syntax Elements 2–163

Database administrators can define a domain to be used by applications which
will make it easier to use.

SQL> create domain GUID_DOMAIN
cont> char(16) character set -11;
SQL>
SQL show domain GUID_DOMAIN;
GUID_DOMAIN CHAR(16)

GUID 16 Characters, 16 Octets
SQL>

This domain can be used for column, parameter, and variable definitions.

To support storing literal GUID values, SQL also supports GUID literals. The
literals follow the standard literal format using the special prefix _GUID, as
shown in the following examples.

SQL> create domain GUID_DOMAIN
cont> char(16) character set -11;
SQL> show domain GUID_DOMAIN;
GUID_DOMAIN CHAR(16)

GUID 16 Characters, 16 Octets

SQL> create table SAMPLE
cont> (a int
cont> ,b GUID_DOMAIN default _guid’00000000-0000-0000-0000-000000000000’);
SQL> insert into SAMPLE default values;
1 row inserted

SQL> show table (column) SAMPLE;
Information for table SAMPLE

Columns for table SAMPLE:
Column Name Data Type Domain
----------- --------- ------
A INTEGER
B CHAR(16) GUID_DOMAIN

GUID 16 Characters, 16 Octets
Oracle Rdb default: GUID’00000000-0000-0000-0000-000000000000’
SQL>

The literal can also be used in queries to select existing rows.

SQL> select * from SAMPLE
cont> where b = _guid’3DBB657F-8513-11DF-9B74-0008029189E7’;

2–164 Language and Syntax Elements

2.6.2.25 SYSDATE Function
The SYSDATE function returns the current date and time. It does not require
any arguments.

SYSDATE is a synonym for CURRENT_TIMESTAMP. As with CURRENT_
TIMESTAMP, the return result of SYSDATE is affected by the setting of the
SET DEFAULT DATE FORMAT statement, as shown in the following example:

SQL> SET DEFAULT DATE FORMAT ’SQL99’
SQL> SELECT SYSDATE, CURRENT_TIMESTAMP
cont> FROM RDB$DATABASE;

1995-08-21 15:21:05.29 1995-08-21 15:21:05.29
1 row selected
SQL> SET DEFAULT DATE FORMAT ’VMS’
SQL> SELECT SYSDATE, CURRENT_TIMESTAMP
cont> FROM RDB$DATABASE;

21-AUG-1995 15:21:24.83 21-AUG-1995 15:21:24.83
1 row selected

2.6.2.26 SYSTIMESTAMP Function
The SYSTIMESTAMP function returns the current date and time as a
TIMESTAMP type. This function is similar to SYSDATE and CURRENT_
TIMESTAMP however, its type doesn’t change when the SET DEFAULT DATE
FORMAT command is used.

Syntax: SYSTIMESTAMP [(fractional-seconds-precision)]

The function name can be followed by an optional fractional-seconds-precision.
This value, if omitted, defaults to 2 and accepts the values 0, 1, or 2.

The following example shows that SYSTIMESTAMP always returns a SQL
standard date and time.

SQL> select systimestamp,sysdate,current_timestamp from rdb$database;
2007-03-27 16:33:32.19 27-MAR-2007 16:33:32.19 27-MAR-2007 16:33:32.19
1 row selected
SQL> set default date format ’sql99’;
SQL> select systimestamp,sysdate,current_timestamp from rdb$database;

2007-03-27 16:33:41.32 2007-03-27 16:33:41.32 2007-03-27 16:33:41.32
1 row selected
SQL>

Language and Syntax Elements 2–165

2.6.2.27 SYSTEM_UID Function
Returns a unique integer that represents the system user.

2.6.2.28 SYSTEM_USER Function
The SYSTEM_USER function returns the user name of the process at the time
of the database attach.

If you attach to the database specifying a user name and password in the
USER and USING clauses, SQL returns the user name you specify.

The resulting data type is CHAR(31).

2.6.2.29 TRANSLATE Function
SQL provides an alterative TRANSLATE function which uses a comma
separated list of arguments.

TRANSLATE (<sourcestring>, <fromstring>, <tostring>)

This format of the TRANSLATE function uses two translation character
strings to define the translation of specific characters. Any characters in the
<sourcestring> which do not appear in the <fromstring> are not replaced.
Any characters in the source string which do appear in the <fromstring> are
replaced with the character from the corresponding position in the <tostring>.
The <fromstring> may be longer than the <tostring> and in this case the
matched character is omitted from the result.

If any of the arguments <sourcestring>, <fromstring>, and <tostring> are
NULL then the result of the TRANSLATE function is NULL.

The data type of the result is a VARCHAR string with a length and character
set equivalent to that of the <sourcestring>.

Examples
Example 1: Eliminating characters

This example removes the single quote punctuation character from names. For
example, "O’Hara" will becomes "OHara". This would usually be done during
sorting to avoid having the single quote group these names separately, and
instead they are ordered between names starting with "Og" (such as Ogdan)
and "Oi" (such as Oiler).

SQL> select last_name
cont> from EMPLOYEES
cont> order by TRANSLATE (last_name, ’"’’’, ’"’);

Note

In Oracle Database the empty string is considered to be NULL, so

2–166 Language and Syntax Elements

an extra ’"’ character was added to the translation strings to avoid
a NULL result. This is not required for Oracle Rdb. However, if an
ORACLE dialect is used then these Oracle semantics would be possible.

Example 2: Formatting characters

When numeric values are displayed they are normally displayed with leading
spaces, however, some applications require leading zeros. This example
assumes that the postal code is stored as an INTEGER but needs to report
the 5 digits with leading zeros.

SQL> select TRANSLATE (CAST(postal_code as CHAR(5)), ’ ’, ’0’)
cont> from EMPLOYEES;

Example 3: Masking characters

TRANSLATE can be used to mask out characters which should not appear in
the output. For instance, when displaying a license number all the letters are
required to be converted to ’X’ and all digits to ’9’.

SQL> select TRANSLATE (’2KRW229’,
cont> ’01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
cont> ’99999999999XXXXXXXXXXXXXXXXXXXXXXXXXX’)
cont> from ...;
9XXX999

Example 4: Transforming text for sorting

Last names often contain special punctuation characters, such as the single
quote in O’Sullivan, or D’Amico. Consider this simple example from the
PERSONNEL database.

SQL> select last_name
cont> from employees
cont> where last_name starting with ’D’
cont> order by last_name;
LAST_NAME
D’Amico
Dallas
Danzig
Dement
Dement
Dietrich
Dietrich
7 rows selected
SQL>

You can see that the quote punctuation causes the name to sort higher than
expected by many applications (such as telephone book listings).

Language and Syntax Elements 2–167

This example removes the single quote punctuation character from names and
converts the last name to lowercase so that these names sort within similar
names without quote punctuation. However, the original name is displayed as
stored in the column.

SQL> select last_name
cont> from employees
cont> where last_name starting with ’D’
cont> order by translate (last_name,
cont> ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’’’,
cont> ’abcdefghijklmnopqrstuvwxyz’);
LAST_NAME
Dallas
D’Amico
Danzig
Dement
Dement
Dietrich
Dietrich
7 rows selected
SQL>

The first string argument to TRANSLATE contains the target set of characters,
if a character in the name does not match this set it is written to the result
unchanged. For example, the trailing spaces are simply copied to the result.

The second string argument contains the translations for those characters.
Any upper case characters are transformed into their lower case equivalent. If
a single quote character is matched then it is omitted from the result because
there was no translation.

Applying these rules will convert "D’Amico" to "damico" so that it sorts between
"dallas" and "danzig".

2.6.2.30 TRANSLATE USING Function
The TRANSLATE function translates a character value expression from one
character set to another compatible character set.

The characters in the char-value-expr are translated, character-by-character, to
the character set indicated by the translation name. If a direct translation
exists for a character, it is replaced by the equivalent character in the
translation character set. If there is no direct translation for a character, it
is replaced by the space character of the translation character set, as shown in
the example using the TRANSLATE function.

2–168 Language and Syntax Elements

For example, the Kanji character set contains traditional Kanji characters,
Katakana characters, ASCII characters, and Roman characters that are ASCII
characters encoded in 2 octets. If a Kanji char-value-expr is translated using
the RDB$KATAKANA translation name, those 2-octet Kanji characters that
have an equivalent in the 1-octet Katakana character set are translated. The
other characters are replaced by the Katakana space character.

Table 2–25 shows the translation name for each character set and to what
character set SQL translates particular types of characters.

Table 2–25 Translation Names and Allowable Translations

char-translation

Translation Name char-value-expression Result

RDB$DEC_MCS MCS MCS

ASCII ASCII1

RDB$KANJI Kanji Kanji

ASCII Kanji (Roman characters)

Katakana Kanji (Katakana characters)

RDB$DEC_KANJI Kanji Kanji

ASCII ASCII1

Katakana Hankaku Katakana

RDB$HANZI Hanzi Hanzi

RDB$DEC_HANZI Hanzi Hanzi

ASCII ASCII1

RDB$KOREAN Korean Korean

RDB$DEC_KOREAN Korean Korean

ASCII ASCII1

RDB$HANYU Hanyu Hanyu

RDB$DEC_SICGCC Hanyu Hanyu

ASCII ASCII1

RDB$DEC_HANYU Hanyu Hanyu

ASCII ASCII1

1Many character sets include ASCII characters. SQL translates the ASCII characters in the source
character set to ASCII characters in the target character set.

(continued on next page)

Language and Syntax Elements 2–169

Table 2–25 (Cont.) Translation Names and Allowable Translations

char-translation

Translation Name char-value-expression Result

RDB$KATAKANA Katakana Katakana

Kanji (Katakana) Katakana

ASCII ASCII1

RDB$ISOLATINARABIC Arabic Arabic

ASCII ASCII1

RDB$ISOLATIN1 Extended European
Characters
ASCII

ASCII1

Extended European Characters

RDB$ISOLATIN9 Extended European
Characters
ASCII

ASCII1

Extended European Characters

RDB$ISOLATINCYRILLIC Cyrillic Cyrillic

ASCII ASCII1

RDB$ISOLATINGREEK Greek Greek

ASCII ASCII1

RDB$ISOLATINHEBREW Hebrew Hebrew

ASCII ASCII1

RDB$DEVANAGARI Devanagari Devanagari

ASCII ASCII1

RDB$SHIFT_JIS Kanji Shift_JIS

ASCII Shift_JIS (Roman characters)

Katakana Shift_JIS (Katakana characters)

RDB$HEX All Characters Hexadecimal Equivalent

RDB$UNICODE All Characters Unicode

RDB$UTF8 All Characters UTF8

RDB$WIN_* same as RDB$ISOLATIN*
with same name

RDB$DOS_LATIN1 same as RDN$ISOLATIN1

1Many character sets include ASCII characters. SQL translates the ASCII characters in the source
character set to ASCII characters in the target character set.

(continued on next page)

2–170 Language and Syntax Elements

Table 2–25 (Cont.) Translation Names and Allowable Translations

char-translation

Translation Name char-value-expression Result

RDN$DOS_LATINUS same as RDB$ISOLATIN1

RDB$GB18030 Hanzi Hanzi

ASCII ASCII

RDB$AL24UTFFSS All Characters UTF8 Unicode standard 1.1

If a character in the source character string is not compatible with the target
character set, SQL substitutes a space character for that character.

Example: Using the TRANSLATE function

Use the TRANSLATE function to translate a DEC_MCS column, ENGLISH, to
KANJI:

In the previous example, the TRANSLATE function translates the ASCII
characters in the ENGLISH column of the COLOURS table to the Roman
characters of the Kanji character set, which uses 2 octets per character. This is
useful for concatenation (see Section 2.6.6).

Language and Syntax Elements 2–171

2.6.2.31 TRIM Function
The TRIM function removes either or both leading or trailing spaces, numbers,
or characters from any character value expression. SQL returns the specified
string minus any leading or trailing characters (or both).

The BOTH option is the default if none is specified. The space character is the
default if a string is not specified.

The character value expression that you trim must be defined as data type
CHAR, VARCHAR, NCHAR, or NCHAR VARYING. Use the CAST function to
convert other data types before using the TRIM function.

SQL returns a run-time error when the trim character is not exactly one
character in length.

Examples: Using the TRIM function

Example 1: The following example, though not effective, shows the TRIM
function:

SQL> SELECT LAST_NAME,
cont> TRIM (LEADING ’H’ FROM LAST_NAME)
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’H%’;

LAST_NAME
Hall all
Harrington arrington
Harrison arrison
Hastings astings
Herbener erbener
5 rows selected

Example 2: Using the TRIM function with the WHERE clause

SQL> -- The following INSERT statement helps to show the
SQL> -- TRIM function.
SQL> --
SQL> INSERT INTO EMPLOYEES (LAST_NAME,FIRST_NAME,EMPLOYEE_ID) VALUES
cont> (’ Hillson’,’Ann’,’99999’);
1 row inserted
SQL> --
SQL> -- If you select columns without specifying the
SQL> -- TRIM function on the WHERE clause, SQL returns only those
SQL> -- last names that start with ’H’ and have no leading spaces.
SQL> --
SQL> SELECT LAST_NAME || ’, ’ || FIRST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’H%’;

2–172 Language and Syntax Elements

Hall , Lawrence
Harrington , Margaret
Harrison , Lisa
Hastings , Norman
Herbener , James
5 rows selected
SQL> --
SQL> -- Add the TRIM function to the WHERE clause to get a complete
SQL> -- list of last names beginning with ’H’ including those with
SQL> -- leading spaces.
SQL> --
SQL> SELECT LAST_NAME || ’, ’ || FIRST_NAME
cont> FROM EMPLOYEES
cont> WHERE TRIM (LEADING ’ ’ FROM LAST_NAME) LIKE ’H%’;

Hastings , Norman
Harrington , Margaret
Hall , Lawrence
Harrison , Lisa
Hillson , Ann

Herbener , James
6 rows selected

Example 3: Using the TRIM function on the SELECT portion of a query in
addition to the WHERE clause

SQL> -- Add the TRIM function to the SELECT portion of the query
SQL> -- to trim the leading spaces from the display of ’Hillson’.
SQL> -- Note that the LEADING option has been changed to the BOTH
SQL> -- option to trim leading and trailing spaces from the
SQL> -- LAST_NAME column.
SQL> --
SQL> SELECT TRIM (BOTH ’ ’ FROM LAST_NAME) || ’, ’ || FIRST_NAME
cont> FROM EMPLOYEES
cont> WHERE TRIM (LEADING ’ ’ FROM LAST_NAME) LIKE ’H%’;

Hastings, Norman
Harrington, Margaret
Hall, Lawrence
Harrison, Lisa
Hillson, Ann
Herbener, James
6 rows selected

Language and Syntax Elements 2–173

2.6.2.32 TRUNC Function
The TRUNC function accepts two numeric value expressions (n,m) as
arguments. The result is the first value expression n truncated to m places
to the right of the decimal point. The value expression m can be negative to
truncate digits to the left of the decimal point. The data type of m must be
an unscaled numeric value (tinyint, smallint, integer, or bigint). If omitted, m
defaults to zero. See the following example.

SQL> select avg (salary_amount)
cont> from salary_history
cont> where employee_id = ’00164’;

3.857350000000000E+004
1 row selected

SQL> select trunc (avg (salary_amount)) as SAL edit using ’sz(9).99’
cont> from salary_history
cont> where employee_id = ’00164’;

SAL
38574.00

1 row selected

Usage Notes

• The function TRUNC for numeric values is supported as a native function
in Oracle Rdb.

• Fixed point values are truncated and rounded correctly. Floating values,
while supported by TRUNC, may not always return the expected results.
Please review usage of TRUNC in such contexts.

• The result type for TRUNC will match the data type of the input source
parameter.

• The implementation of TRUNC for DATE values requires the use of the
OCI Services for Rdb library (also know as SQL*net for Rdb). These
functions will now accept DATE ANSI, TIMESTAMP and DATE VMS
values.

• Attempts to use TRUNC on a database that is not setup for OCI Services
will receive errors similar to these:

2–174 Language and Syntax Elements

SQL> select TRUNC (current_date) from rdb$database;
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - TRUN2
SQL> select ROUND (current_date) from rdb$database;
%RDB-E-OBSOLETE_METADA, request references metadata objects that no longer exist
-RDMS-F-BAD_SYM, unknown routine symbol - ROUN2

Note

The special functions ROUN2 and TRUN2 are internal routines to deal
with DATE types.

• TRUNC supports the data types REAL, FLOAT and DOUBLE PRECISION
for both parameter and results. However, due to the imprecise nature
of floating point arithmetic this may cause unexpected results. A value
such as 4.185 will not round to 4.19 as expected because the internal
(and approximate) representation of the number is something like
4.184999942780E+000 and therefore does not appear to require rounding
to the second decimal place according to the rounding rules.

The following example shows this problem.

SQL> select cast(round (4.185,2) as integer(2)) from rdb$database;

4.18
1 row selected
SQL> select cast(round (4.175,2) as integer(2)) from rdb$database;

4.18
1 row selected
SQL>

Note

The result of a divide operation (/) or the AVG, STDDEV, VARIANCE
statistical functions are floating point values, so applying TRUNC or
ROUND to those results, even if performed on integer sources, will also
be affected by the intermediate floating point type.

• If you use SQL to access older versions of Rdb (such as via remote access)
then SQL will revert to the previous behavior and use the SQL functions
provided by the SQL_FUNCTIONS library.

Language and Syntax Elements 2–175

2.6.2.33 UPPER Function
The UPPER function converts all lowercase characters in a value expression to
uppercase characters. This function is useful to maintain consistency in value
expressions in the database.

If the result of the value expression is NULL, the function returns a null value.

Example: Using the UPPER function

Use the UPPER function to convert the lowercase characters in DEPARTMENT_
NAME from the personnel sample database to uppercase characters:

SQL> SELECT DEPARTMENT_NAME, UPPER(DEPARTMENT_NAME)
cont> FROM DEPARTMENTS
cont> LIMIT TO 3 ROWS;
DEPARTMENT_NAME
Corporate Administration CORPORATE ADMINISTRATION
Electronics Engineering ELECTRONICS ENGINEERING
Large Systems Engineering LARGE SYSTEMS ENGINEERING
3 rows selected

When you use the UPPER function, SQL follows the rules of the character
set of the value expression when converting characters to uppercase. For
example, if the character set of the value expression is Hanzi and ASCII, SQL
converts only the ASCII characters to uppercase. It does not convert the Hanzi
characters.

2.6.2.34 USER Function
The USER function specifies the current active user name for a request and
is a synonym for the (CURRENT_USER) function. For definer’s rights stored
procedures, the returned user name is the definer’s user name. For all other
requests, it is the current user name of the calling routine or, if no calling
routine, the current session user name. The resulting data type is CHAR(31).

Example: Using the USER function

Example 1: Consider an application used by several people to record their
sales. The application identifies the sales person by assigning USER to a
column in the table:

EXEC SQL
INSERT INTO SALES_LOG

(DATE, AMOUNT, SALES_PERSON)
VALUES
(:SALE_DATE, :SALE_AMOUNT, USER)

END-EXEC

2–176 Language and Syntax Elements

Example 2: Sales people could then easily retrieve logs of their sales:

SQL> SELECT * FROM SALES_LOG
cont> WHERE SALES_PERSON = USER;
DATE AMOUNT SALESPERSON
5-DEC-1988 00:00:00.00 578 FIELDMAN

1 row selected
SQL>

2.6.3 Aggregate Functions
Aggregate functions calculate a single value for a collection of rows in a result
table. Aggregate functions are sometimes called statistical functions.

Table 2–26 describes these functions and the calculated value.

Table 2–26 Aggregate Functions

Function Name Calculated Value

COUNT Number of rows in a result table or values in a column

SUM Sum of a set of values

STDDEV (standard deviation) The square root of the variance and is
expressed in the same units as the source expression.

AVG Average of a set of values

MAX Largest value in a set of values

MIN Smallest value in a set of values

VARIANCE Statistical measure of variablity from the mean (or average) value.

The following notes generally apply to aggregate functions. An aggregate
function is a single value derived from one or more sets of values.

• A value expression is used to evaluate a value for each row. The aggregate
function operates on these values.

• Null values are not included when SQL evaluates functions. If you specify
DISTINCT, redundant values are also not included. If you have set the
dialect to SQL99, this null elimination causes a warning to be returned
for the SQLCODE or SQLSTATE. See Appendix C for more information on
SQLSTATE and SQLCODE.

• If a function has as its argument a value expression that contains a column
name that is an outer reference (see Section 2.2.4.2), the value expression
cannot include an arithmetic operator. (The only cases where an outer
reference makes sense as the argument to a function is in the subquery of
a HAVING clause or in a subquery in a select list.)

Language and Syntax Elements 2–177

• You cannot nest functions. This means that a value expression used as an
argument to a function cannot include a function.

• The keyword ALL in SUM, AVG, MAX, and MIN has no effect. For
instance, specifying MAX (ALL EMPLOYEE_ID) is the same as saying
MAX (EMPLOYEE_ID).

• VARIANCE and STDDEV must be passed a single numeric value
expression and the result is returned as a DOUBLE PRECISION value.
Use the CAST function to alter the result data type.

• VARIANCE, and hence STDDEV, assume that one degree of freedom is
used in the calculation of the mean (average) and therefore the divisor is
specified as (n-1). For a large number of values in the statistical sample
this will not be significant. However, for small samples it may not be
desirable, so this default can be changed for the current session by using
the SET FLAGS option VARIANCE_DOF(0). Only the values 0 and 1 are
allowed.

• The keywords ALL and DISTINCT are not permitted when using the
VAR_POP, VAR_SAMP, STDDEV_POP and STDDEV_SAMP statistical
functions.

The FILTER clause is provided for all statistical functions. This clause can
be used to limit the values included in the COUNT, MAX, MIN, SUM, AVG,
STDDEV, and VARIANCE functions.

FILTER can be used to eliminate data from the statistical function so that the
generated report can process the data in a single pass. The following example
illustrates how the FILTER clause is applied.

SQL> select
cont> max (salary_amount) filter (where salary_end is null),
cont> max (salary_amount) filter (where salary_end is not null),
cont> min (distinct salary_amount) filter (where salary_end = salary_start),
cont> min (distinct salary_amount) filter (where salary_end > salary_start)
cont> from
cont> salary_history
cont> where
cont> employee_id = ’00164’
cont> group by
cont> employee_id;

51712.00 50000.00 NULL 26291.00
1 row selected
SQL>

The following sections describe the aggregate functions in more detail.

2–178 Language and Syntax Elements

2.6.3.1 COUNT Function
There are three forms of the COUNT function:

• COUNT (*) calculates the number of rows in a result table. It is the only
function that does not allow a specific column name in its argument. The
data type of the resulting value expression is an integer.

• COUNT (value-expr) calculates the number of non-NULL values of the
value-expr in a result table. The value-expr is evaluated for each row and,
if non-NULL, the count is incremented or the value is counted. The data
type of the resulting value is an integer.

• COUNT (DISTINCT value-expr) calculates the number of distinct values
of the specified value-expr in the result table. The COUNT DISTINCT
function eliminates duplicate values from the number it calculates. The
value-expr is evaluated for each row and, if non-NULL and if different
from previously seen values, the value is counted. It does not count null
values in the specified value-expr. The data type of the resulting value is
an integer.

If there are no values in the result table to which the COUNT function is
applied, the COUNT function returns a zero.

Example: Using the COUNT function

Use the COUNT (*) function to find the number of employees in the personnel
database. Use the COUNT (DISTINCT) function to find the number of
different states in which they reside:

SQL> SELECT COUNT (*) FROM EMPLOYEES;

100
1 row selected
SQL> SELECT COUNT (DISTINCT STATE) FROM EMPLOYEES;

3
1 row selected

2.6.3.2 SUM Function
The SUM function calculates the total of the values specified by the value
expression in its argument. If there are no rows in the result table to which
the SUM function is applied, it returns a null value.

The SUM function must refer to a value with a numeric or INTERVAL data
type. It returns a value of the same general data type (fixed- or floating-point)
big enough to store the result.

If your dialect is set to an ANSI/ISO SQL standard, a warning message is
returned if any of the values is NULL.

Language and Syntax Elements 2–179

Example: Using the SUM function

Use the SUM function to calculate the total annual payroll of the company.
The SUM function uses all the values that do not have null values in the

column SALARY_AMOUNT within the view CURRENT_SALARY as the result
table for its calculation:

SQL> SELECT SUM(SALARY_AMOUNT) FROM CURRENT_SALARY;

3192279.00
1 row selected

Because there are no salaries greater than $32,000 to which the SUM function
is applied, it returns NULL from the following selection:

SQL> SELECT SUM(SALARY_AMOUNT) FROM CURRENT_SALARY
cont> WHERE SALARY_AMOUNT > ’32000’;

NULL
1 row selected

2.6.3.3 AVG Function
The AVG function calculates the average of the values specified by the value
expression in its argument. If there are no rows in the result table to which
the AVG function is applied, it returns a null value.

The AVG function must refer to a value with a numeric or INTERVAL data
type. The value it returns is a floating-point data type for numeric expressions,
or an INTERVAL data type.

If a value is NULL, the row is treated as missing and, if your dialect is set to
an ANSI/ISO SQL standard, a warning message is returned.

Example: Using the AVG function

Use the AVG function to find the average salary of all current employees:

SQL> SELECT AVG(SALARY_AMOUNT) FROM CURRENT_SALARY;

3.192279000000000E+004
1 row selected

2.6.3.4 MAX Function
The MAX function calculates the largest of the values specified by the value
expression in its argument. If there are no values in the result table to which
the MAX function is applied, it returns a null value.

The MAX function returns a value of the same data type as the value in its
argument for all data types except LIST OF BYTE VARYING.

2–180 Language and Syntax Elements

Example: Using the MAX function

Use the MAX function to find the highest salary paid to an employee:

SQL> SELECT MAX(SALARY_AMOUNT) FROM CURRENT_SALARY;

93340.00
1 row selected

2.6.3.5 MIN Function
The MIN function returns the smallest of the values specified by the value
expression in its argument. If there are no values in the result table to which
the MIN function is applied, it returns a null value.

The MIN function returns a value of the same data type as the column in its
argument for all data types except LIST OF BYTE VARYING.

Example: Using the MIN function

Use the MIN function to find the lowest salary paid to an employee:

SQL> SELECT MIN(SALARY_AMOUNT) FROM CURRENT_SALARY;

8687.00
1 row selected

2.6.3.6 STDDEV Functions
The STDDEV (standard deviation) function calculates the square root of the
variance and is expressed in the same units as the source expression.

Oracle Rdb provides the following statistical functions to standard deviation:

• STDDEV

This function calculates the standard deviation.

• STDDEV_POP

This function calculates the standard deviation (the square root of the
variance) for the population. It is equivalent to STDDEV with degrees of
freedom fixed at 0, that is, SET FLAGS ’VARIANCE_DOF(0) ’.

• STDDEV_SAMP

This function calculates the standard deviation (the square root of the
variance) for the subset of sampling of the population. It is equivalent
to STDDEV with degrees of freedom fixed at 1, that is, SET FLAGS
’VARIANCE_DOF(1)’ which is the default setting. By convention
one degree of freedom is used when the sampling of the population is
performed.

Language and Syntax Elements 2–181

2.6.3.7 VARIANCE Functions
The VARIANCE function calculates the variablity from the mean (or average)
value.

Variance is calculated by the following statistical formula:

�	
�	�� �

��

�=1
�

2
�
�

1
�

[
��

�=1
��]2

��1

Where:

xi is one of the elements of x

n is the number of elements in the set x. If n is 1, the variance is defined to be
0.

Oracle Rdb provides the following variance statistical functions:

• VARIANCE

Calculates the variance of the value set.

• VAR_POP

This function calculates the variance for the population. It is equivalent
to VARIANCE with degrees of freedom fixed at 0, that is, SET FLAGS
’VARIANCE_DOF(0)’.

• VAR_SAMP

This function calculates the variance for a subset or sampling of the
population. It is equivalent to VARIANCE with degrees of freedom fixed at
1, that is, SET FLAGS ’VARIANCE_DOF(1)’. By convention one degree of
freedom is used when the sampling of the population is performed.

Example: Using the STDDEV and VARIANCE functions

The following examples show the results from using VARIANCE and STDDEV
on a numeric value expression:

SQL> SELECT VARIANCE (ALL salary_amount)
cont> FROM salary_history WHERE salary_end IS NULL;

4.396628811574747E+008
1 row selected
SQL> SELECT VARIANCE (DISTINCT salary_amount),
cont> COUNT (DISTINCT salary_amount)
cont> FROM salary_history WHERE salary_end IS NULL;

4.399944817652031E+008 99
1 row selected
SQL> SELECT STDDEV (DISTINCT salary_amount), COUNT (DISTINCT salary_amount)
cont> FROM salary_history WHERE salary_end IS NULL;

2–182 Language and Syntax Elements

2.097604542722968E+004 99
1 row selected
SQL> SELECT STDDEV (salary_amount) AS STDDEV
EDIT USING ’$$$,$$$,$$9.99’
cont> FROM salary_history WHERE salary_end IS NULL;

STDDEV
$20,968.14

1 row selected

2.6.4 User-Defined Functions
User-defined functions allow you to execute subprograms written either in 3GL
host languages (such as C or SQL Module language) or in the SQL procedural
language. There are two classes of user-defined functions:

• The external function feature consists of several discrete pieces: the
routine definition, the executable, and the invocation. You define a function
that points to the executable form of the routine. You code, compile, and
link the routine written in a 3GL language.

See CREATE ROUTINE Statement and CREATE MODULE Statement for
information on creating external routines.

• The SQL function feature consists a module definition containing the
function definition. Such SQL functions can include any SQL procedural
language features (except those that change the transaction state: SET
TRANSACTION, START TRANSACTION, COMMIT and ROLLBACK) and
can invoke other functions, call procedures (using the CALL statement)
which in turn can activate other user-defined routines.

See CREATE MODULE Statement for information on creating modules
and functions in SQL.

The function definitions reside in the database like any other schema object,
such as a table or view. Use the SHOW FUNCTION statement to display the
names of user-defined functions. See SHOW Statement for more information
and examples.

Finally, you refer to the routine within an SQL statement for automatic
invocation by the SQL interface.

The following diagram shows how to invoke a user-defined function:

Language and Syntax Elements 2–183

function-invocation =

<function-name> ()
value-expr
DEFAULT

,

You invoke a user-defined function from anywhere you can specify a value
expression. Some of the locations from which you can invoke an external
function are:

• A column using a COMPUTED BY or AUTOMATIC AS value expression
clause

• A CHECK clause in a table constraint, column constraint, or domain
constraint

• A select expression in a view definition or cursor declaration

• On the right-hand side of a set-assignment-statement of a compound
statement or of the SET clause of an UPDATE statement

• A select list or where clause

• A DEFAULT value expression clause for a domain, column or parameter

2.6.5 Database Keys
Database keys (dbkeys) are internal pointers to specific table rows in a
database. Application programs can use the DBKEY or ROWID keyword in
SQL statements to refer to the database key for a table row. The ROWID
keyword is a synonym to the DBKEY keyword.

Database keys are considered value expressions. As such, they can be specified
as part of a select expression.

SQL statements that retrieve rows by specifying their database keys have the
following advantages:

• Fast access: Retrieval through database keys is direct and bypasses any
indexed or sequential searches.

• Reduced locking of data: Because access is direct, the database system
locks only the row retrieved or updated.

• Uniqueness: Within the database key scope specified in the CREATE
DATABASE or DECLARE ALIAS statements, database keys are
guaranteed to be unique. This means singleton SELECT statements

2–184 Language and Syntax Elements

based on database keys will never return more than a single row, and that
they will return the same row, or an error if the row was deleted.

The scope of a database key refers to how long the database system
guarantees that a particular row’s database key will point only to that row
and not be used again even if the row is deleted. In ATTACH, CREATE
DATABASE, DECLARE ALIAS, and IMPORT statements, you can specify that
the database key scope be for the duration of a transaction (the default) or for
the duration of an attachment to the database.

Applications that plan to use database keys across transaction boundaries
should declare databases with the DBKEY SCOPE IS ATTACH clause, which
allows the program to use a database key for a particular table row over the
course of many transactions. If another user deletes the row, the database key
will not be used again for a newly inserted row, ensuring that the database key
is still valid. Any further reference to that DBKEY wukk generate an error.

When you use the DBKEY, some space on the page is not reclaimed until all
users are using DBKEY SCOPE IS TRANSACTION and the page is updated.
Also, see the RMU RECLAIM command which allows online reclaiming of this
space.

Note

Oracle Rdb recommends using DBKEY SCOPE IS TRANSACTION
to reclaim space on a database page faster than if you use DBKEY
SCOPE IS ATTACH.

The following steps detail how applications use database keys:

1. Declare a database that specifies the DBKEY SCOPE IS ATTACH clause.

2. Start a read-only transaction.

3. Declare a cursor that specifies a result table consisting of the columns and
database keys for desired rows.

4. Open the cursor.

5. Fetch the rows of the result table and store them in parameters.

6. Commit the transaction to release locks on database resources.

7. Display a table row stored in parameters, and offer the application user an
opportunity to change values in the row.

Language and Syntax Elements 2–185

8. If the application user chooses to change values in the row, copy the row to
another set of parameters before allowing the application user to change
values. This copy represents the row as originally retrieved from the
database.

9. Start a read/write transaction and use a SELECT INTO statement that
specifies an authorization identifier to retrieve the row and lock it against
changes by other users. Check that other users did not already change
the row (since the read-only transaction began) by comparing the row just
retrieved with the copy made in the previous step. If other users changed
the row, the application might not write over the changed values.

10. If the row in the database matches the row originally retrieved in the
read-only transaction, check that the application user made changes by
comparing the user’s values with the database values.

11. If the application user did change the row, use the database key to specify
the row in an UPDATE statement.

12. Commit the transaction.

13. Display another table row stored in parameters and repeat the process.

SQL does not allow the DBKEY keyword in every context that it allows value
expressions. Interactive SQL does not allow DBKEY literals. You can use the
DBKEY keyword as a value expression only:

• As a select list item (see Section 2.8.1)

EXEC SQL DECLARE GET_DBKEYS CURSOR FOR
SELECT DBKEY FROM EMPLOYEES;

• In a basic predicate that equates another value expression to the DBKEY
keyword

EXEC SQL SELECT * FROM EMPLOYEES WHERE DBKEY = :HOST_VAR;

In addition, the RETURNING DBKEY clause in an INSERT statement directs
SQL to return the database key for the row inserted:

EXEC SQL INSERT INTO TEMP VALUES (:REAL_VAR)
RETURNING DBKEY INTO :DBKEY_VAR;

Keep the following restrictions in mind when you work with database keys:

• SQL never converts database keys to another data type, but uses the exact
value in comparisons or to move to parameters. Oracle Rdb recommends
that host language parameters receiving database key values be declared
as fixed-length character strings.

2–186 Language and Syntax Elements

• Database keys vary in length. In Oracle Rdb databases, database keys are
8 bytes long for base tables and � � �����
 �� �	���� �	��� �� ���� bytes
long for views.

Because of this, you need to declare parameters that are long enough to
hold the longest anticipated database key. If a parameter is longer than a
database key, SQL truncates parameter values when comparing them to
the database keys. If a parameter is not long enough to hold a database
key, SQL returns an error when it processes the program or module.

To determine the length of a database key, retrieve the value of the
RDB$DBKEY_LENGTH column from the RDB$RELATIONS system table,
as shown in the following example:

SQL> SELECT RDB$DBKEY_LENGTH FROM RDB$RELATIONS
cont> WHERE RDB$RELATION_NAME = ’CURRENT_JOB’;
RDB$DBKEY_LENGTH

16
1 row selected

• Rows in result tables or views created by specifying functions, aggregates,
the GROUP BY clause, the HAVING clause, or the UNION clause in a
select expression do not have database keys.

• Sorting (or any implied sorting for projection) will not sort dbkeys in such a
way that the dbkeys can be used to retrieve records in sequential order.

The reason for this behavior is that dbkeys are treated as fixed-length text
strings of 8 * n bytes, where n is the number of tables concerned (may be
one or more for views). Therefore, sorting dbkeys orders the text bytes
according to the default ASCII collating sequence.

2.6.6 String Concatenation Operator
You can use the string concatenation operator (| |) to link two character
value expressions. Concatenated value expressions must belong to one of the
character data types. In addition, the character sets of the concatenated value
expressions must be identical.

Example: Using the Concatenation Operator (| |)

Language and Syntax Elements 2–187

The previous example shows that without automatic translation being enabled,
incompatible character sets cannot beoncatenated. You must first translate the
column to the desired character set. See Section 2.6.2.29 for more information
on the TRANSLATE function.

2.6.7 Arithmetic Expressions and Operators
An arithmetic expression is a value expression formed by combining one
or more numeric value expressions with arithmetic operators. When you
use an arithmetic expression in a statement, SQL calculates the numeric
value associated with the expression and uses that value when executing the
statement.

You cannot use text values in arithmetic expressions whether they are literals,
stored in parameters, or stored in table columns.

If either operand of an arithmetic expression is a null value, the resulting
value is also null.

The arithmetic operators and their functions are:

+ Addition
- Subtraction
* Multiplication
/ Division

You do not have to use spaces to separate arithmetic operators from value
expressions.

You can use parentheses to control the order in which SQL performs arithmetic
operations. SQL follows the normal rules of precedence. That is, it evaluates
arithmetic expressions in the following order:

1. Value expressions in parentheses

2–188 Language and Syntax Elements

2. Multiplication and division, from left to right

3. Addition and subtraction, from left to right

You can use date-time variables and constants in arithmetic expressions. For
details about date-time data types, see Section 2.3.2. Section 2.4.3 provides
information about using date-time data types as literals.

The following restrictions apply to date-time arithmetic:

• You cannot use the DATE VMS data type in date arithmetic; you must
use the CAST function (CAST(VMS_COL AS TIMESTAMP(2))) or alter the
DATE VMS domain to DATE ANSI or TIMESTAMP.

• You must use an interval qualifier with date-time data types in subtraction
operations.

• Certain subtraction operations can produce an answer that can be either
a YEAR-MONTH interval or a DAY-TIME interval. For example, when
subtracting a timestamp from a timestamp or a timestamp from a date,
you must specify the qualifier desired as follows:

SQL> CREATE TABLE ORDER_TABLE
cont> (PART_NUM INT,
cont> ORDER_LOGGED TIMESTAMP(2),
cont> DELIVERY_DATE TIMESTAMP(2),
cont> TIME_TO_DELIVER COMPUTED BY (DELIVERY_DATE - ORDER_LOGGED) DAY(2)
cont> TO MINUTE, SLOW_DELIVERY COMPUTED BY EXTRACT(DAY FROM
cont> (DELIVERY_DATE - ORDER_LOGGED) DAY(2)) - 30);

• You cannot add days to or subtract days from TIME. The result exceeds the
allowable range for TIME. The interval day-time column must be a subset
of HOURS to SECOND.

• You cannot add hours to or subtract hours from DATE. The interval
day-time column must be DAYS only.

The list of valid operations for date-time and interval values appears in
Table 2–27.

Table 2–27 Valid Operators Involving Date-Time and Interval Values

Operand 1 Operator Operand 2 Result Type

Date-time – Date-time Interval

Date-time + or – Interval Date-time

(continued on next page)

Language and Syntax Elements 2–189

Table 2–27 (Cont.) Valid Operators Involving Date-Time and Interval Values

Operand 1 Operator Operand 2 Result Type

Interval + Date-time Date-time

Interval + or – Interval Interval

Interval * or / Numeric Interval

Interval / Numeric Interval

– Interval Interval

Examples: Using Arithmetic Expressions

Example 1: Using an arithmetic expression in a view

An arithmetic expression can be used in a view definition statement. This
example defines a view that calculates a payroll deduction for health insurance.

• The select expression in the view definition limits the rows in the view to
those for current salary (SALARY_END IS NULL).

• The view columns include the employee’s name and a weekly deduction
column, calculated using an arithmetic expression from the annual salary
for each employee (5% of the weekly salary) as follows:

SQL> CREATE VIEW DEDUCT
cont> (LAST_NAME, FIRST_NAME, AMOUNT)
cont> AS SELECT
cont> E.LAST_NAME, E.FIRST_NAME,
cont> (S.SALARY_AMOUNT / 52) * 0.05
cont> FROM EMPLOYEES E, SALARY_HISTORY S
cont> WHERE E.EMPLOYEE_ID = S.EMPLOYEE_ID
cont> AND
cont> S.SALARY_END IS NULL;
SQL> SELECT LAST_NAME, FIRST_NAME,
cont> CAST(AMOUNT AS BIGINT(2)) FROM DEDUCT;
LAST_NAME FIRST_NAME
Toliver Alvin 49.72
Smith Terry 11.23
Dietrich Rick 17.79
.
.
.

2–190 Language and Syntax Elements

Example 2: Using an arithmetic expression in an UPDATE statement

An arithmetic expression can be used to store a value. This example modifies
an employee’s salary in three steps:

1. The UPDATE statement modifies the row in the SALARY_HISTORY table
that represents the employee’s old salary by setting the salary-ending date
to today’s date.

2. The INSERT statement stores a new row using the old EMPLOYEE_ID
and SALARY_END date (the one just modified to today’s date).

3. The arithmetic expression in the INSERT statement calculates the new
salary amount using the old salary (OLD.SALARY_AMOUNT * 1.1) as
follows:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Modify the salary data for employee
SQL> -- with ID 164, adding an ending date:
SQL> --
SQL> UPDATE SALARY_HISTORY
cont> SET SALARY_END = CAST(CURRENT_DATE AS DATE VMS)
cont> WHERE
cont> EMPLOYEE_ID = ’00164’
cont> AND
cont> SALARY_END IS NULL;
1 row updated

SQL> --
SQL> -- Store a new salary by calculating a 10% raise:
SQL> --
SQL> INSERT INTO SALARY_HISTORY
cont> (EMPLOYEE_ID, SALARY_START, SALARY_AMOUNT)
cont> SELECT OLD.EMPLOYEE_ID,
cont> OLD.SALARY_END,
cont> (OLD.SALARY_AMOUNT * 1.1)
cont> FROM SALARY_HISTORY OLD
cont> WHERE
cont> OLD.EMPLOYEE_ID = ’00164’
cont> AND
cont> OLD.SALARY_END = CAST(CURRENT_DATE AS DATE VMS);
1 row inserted

Language and Syntax Elements 2–191

SQL> --
SQL> -- Check the results.
SQL> --
SQL> SELECT S.EMPLOYEE_ID,
cont> S.SALARY_START,
cont> S.SALARY_END,
cont> S.SALARY_AMOUNT
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = ’00164’
cont> ORDER BY S.SALARY_END DESC ;
EMPLOYEE_ID SALARY_START SALARY_END SALARY_AMOUNT
00164 2-Dec-1993 NULL $56,883.20
00164 14-Jan-1983 2-Dec-1993 $51,712.00
00164 21-Sep-1981 14-Jan-1983 $50,000.00
00164 2-Mar-1981 21-Sep-1981 $26,291.00
00164 5-Jul-1980 2-Mar-1981 $26,291.00
5 rows selected

SQL> ROLLBACK;

Example 3: Using months in a date arithmetic expression

If you add one month to 31 January 1993, the month is incremented as
requested, but SQL resets the day to make a valid day of the month. For
example, if you enter:

SQL> ATTACH ’FILENAME corporate_data’;
SQL> SELECT EMPLOYEE_ID, LAST_REVIEW
cont> FROM ADMINISTRATION.PERSONNEL.JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID LAST_REVIEW
00164 NULL
00164 NULL
2 rows selected
SQL> UPDATE ADMINISTRATION.PERSONNEL.JOB_HISTORY
cont> SET LAST_REVIEW = DATE’1993-01-31’ + INTERVAL’1’ MONTH
cont> WHERE EMPLOYEE_ID = ’00164’;
2 rows updated

The output is:

SQL> SELECT EMPLOYEE_ID, LAST_REVIEW
cont> FROM ADMINISTRATION.PERSONNEL.JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID LAST_REVIEW
00164 1993-02-28
00164 1993-02-28
2 rows selected

2–192 Language and Syntax Elements

2.6.8 Conditional Expressions
A conditional expression is an advanced form of the value expression that
allows applications to return alternate information within an expression. See
Value_Expressions for more information on the syntax. Table 2–28 describes
the conditional expressions that are supported by Oracle Rdb.

Table 2–28 Conditional Expressions

Expression
Name Description

ABS ABS returns the absolute value of n.

CASE CASE alters the result of an expression. CASE can also generate or
convert null values.

COALESCE COALESCE returns the first non-NULL value from a series of value
expressions; otherwise, returns NULL.

DECODE Alternate form of the Case expression.

GREATEST GREATEST returns the greatest non-null value.

LEAST LEAST returns the least non-null value.

NULLIF NULLIF substitutes NULL when two value expressions are equal;
otherwise, returns the first value.

NVL NVL returns the first non-NULL value from a series of value
expressions; otherwise, returns NULL. NVL is a synonym for
COALESCE.

NVL2 If the first value expression to NVL2 is not NULL, then return
the second value expression; otherwise return the third value
expression.

SIGN SIGN returns the sign of the value

The following sections describe the SQL implementation of these expressions.

2.6.8.1 ABS Function
The ABS function returns NULL if the passed value expression evaluates to
NULL. The datatype of the result is the same as the passed value expression
and supports scaled values of these data types: TINYINT, SMALLINT,
INTEGER, BIGINT, REAL, FLOAT, DOUBLE PRECISION, INTERVAL,
DECIMAL, NUMERIC and NUMBER.

The absolute value function (ABS) returns NULL if the value expression
evaluates to NULL. If the value expression evaluates to a value less than zero
then that value is negated so that a positive value is returned. Otherwise the
value is returned unchanged. For instance, ABS (-1) will return the value 1.

Language and Syntax Elements 2–193

ABS (a) is equivalent to the CASE expression

case
when a < 0 then - a
else a

end

Usage Notes:

• The SQL_FUNCTIONS script still includes the ABS external function
definition for those stored definitions (procedures, functions, triggers,
views, and so on) or compiled applications that currently use it. However,
new references to ABS will use the new builtin conditional expression.

• Applications wishing to continue to use the external function should use
delimiters around the ABS function name.

SQL> set quoting rules ’SQL92’;
SQL> select "ABS" (v) from T;

The delimited name will force the function definition to be used.

Refer to Appendix G for more information on the SQL_FUNCTIONS script.

Example: Using the ABS function on an INTERVAL result of a date
subtraction.

SQL> select
cont> ABS ((birthday - current_date) year(3))
cont> from employees
cont> order by employee_id
cont> limit to 10 rows;

054
047
047
064
068
062
044
069
050
074

10 rows selected

Example: Using ABS within a statistical function

2–194 Language and Syntax Elements

SQL> -- what is the average time in a job for each employee
SQL> -- exclude anyone on there first job
SQL> select
cont> employee_id,
cont> AVG (ABS (EXTRACT (MONTH FROM (job_start - job_end) month (4))))
cont> as "Average Job" edit using ’--,---,--9.99" years"’
cont> from JOB_HISTORY
cont> where employee_id < ’00200’
cont> group by employee_id
cont> having COUNT (*) > 1;
EMPLOYEE_ID Average Job
00164 14.00 years
00165 22.67 years
00166 20.00 years
00167 14.50 years
00168 26.33 years
00169 22.67 years
...etc...
00197 26.33 years
00198 37.00 years
00199 35.00 years
30 rows selected
%RDB-I-ELIM_NULL, null value eliminated in set function

2.6.8.2 COALESCE and NVL Expressions
The COALESCE and NVL expressions return the first non-NULL value from a
series of value expressions.

SQL evaluates each value expression in a COALESCE or NVL expression
until it can return a non-NULL value. If all the columns specified in the
COALESCE or NVL expression contain NULL values, then NULL is returned.

The data type of the resulting expression is a common data type to
which all value expressions in the list can be converted. For example,
COALESCE(SALARY_AMOUNT, ESTIMATED_BONUS, 1.23E+5) results
in a DOUBLE PRECISION result because at least one argument is a floating
point value.

The following example replaces the stored NULL value in the MIDDLE_
INITIAL column of the EMPLOYEES table with a hyphen:

Language and Syntax Elements 2–195

SQL> SELECT FIRST_NAME, LAST_NAME, MIDDLE_INITIAL,
cont> COALESCE(MIDDLE_INITIAL, ’-’)
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’L%’;
FIRST_NAME LAST_NAME MIDDLE_INITIAL
Jo Ann Lapointe C C
Hope Lapointe NULL -
Stan Lasch P P
Norman Lasch NULL -
Peter Lengyel A A
Peter Lonergan V V
6 rows selected

2.6.8.3 CASE Expressions
There are many situations where you might find it useful to alter the result
of an expression. For example, you might have a table column called WORK_
STATUS containing the data 0, 1, and 2 meaning Inactive, Full time, and
Part time, respectively. The single character is more efficient to store than
the definition of the character in the database. However, the definition of the
single character is not always intuitive.

There may also be times when you want to generate null values based on the
information derived from the database or, conversely, convert a null value into
a more concrete value like zero (0). The CASE expressions provide an easy
solution to these problems.

There are two types of CASE expressions:

• Simple—matches two value expressions for equality

• Searched—allows complex predicate, including subqueries

An example of the simple case expression follows:

2–196 Language and Syntax Elements

SQL> SELECT LAST_NAME, FIRST_NAME,
cont> CASE STATUS_CODE
cont> WHEN ’1’ THEN ’Full time’
cont> WHEN ’2’ THEN ’Part time’
cont> WHEN NULL THEN ’Unknown’
cont> ELSE ’Inactive’
cont> END
cont> FROM EMPLOYEES;
LAST_NAME FIRST_NAME
Smith Terry Part time
O’Sullivan Rick Full time
.
.
.

Sarkisian Dean Part time
Stornelli James Full time
Hall Lawrence Full time
Mistretta Kathleen Full time
James Eric Inactive
MacDonald Johanna Full time
Dement Alvin Full time
Blount Peter Full time
Herbener James Full time
Ames Louie Full time
100 rows selected

When SQL encounters the first WHEN clause that matches the primary value
expression following the CASE keyword, it evaluates the THEN clause. If no
matching values are found, the ELSE clause is evaluated. If the ELSE clause
is missing, NULL is the returned value. For example:

SQL> SELECT PRODUCT_NAME,
cont> CASE
cont> WHEN QUANTITY <= 0 THEN ’On back order’
cont> WHEN QUANTITY > 0 THEN
cont> CAST(QUANTITY AS VARCHAR(10)) || ’ in stock’
cont> END
cont> FROM INVENTORY;
PRODUCT_NAME
Staples-boxes 20 in stock
Staplers-each 3 in stock
Tape-rolls On back order
Calendars-each 25 in stock
Tape disp.-each On back order
Desk cleaner NULL
6 rows selected

Language and Syntax Elements 2–197

An example of the searched case expression follows:

SQL> SELECT PRODUCT_NAME,
cont> CASE
cont> WHEN QUANTITY <= 0 THEN ’On back order’
cont> WHEN QUANTITY > 0 THEN
cont> CAST(QUANTITY AS VARCHAR(10)) || ’ in stock’
cont> ELSE -- must be NULL
cont> ’New Item - awaiting stock’
cont> END
cont> FROM INVENTORY;
PRODUCT_NAME
Staples-boxes 20 in stock
Staplers-each 3 in stock
Tape-rolls On back order
Calendars-each 25 in stock
Tape disp.-each On back order
Desk cleaner New Item - awaiting stock
6 rows selected

The searched case expression allows arbitrary expressions in each WHEN
clause, as shown in the previous example. The simple case expression is a
shorthand method of specifying the searched case expression.

For the simple and searched case expressions, the data types of the value
expressions of the WHEN clause must be comparable, and the data types of
the value expressions of the THEN clause must be comparable.

All subqueries in a CASE expression are evaluated. It is the results of these
subqueries that are conditionalized by the CASE expression and not the actual
evaluation.

If any subquery (which must return at most a single row and column) returns
more than one row, the following exception is generated:

%RDB-E-MULTIPLE_MATCH, record selection criteria should identify only one
record; more than one record found

A workaround is to add one of the following clauses to the subquery:

• LIMIT TO 1 ROW

This ensures that only one row is returned. For example:

2–198 Language and Syntax Elements

.

.

.
cont> WHEN A IS NOT NULL
cont> THEN (SELECT A FROM T WHERE B = Y
cont> LIMIT TO 1 ROW)

.

.

.

The WHEN condition ignores this row if it is not valid.

• Duplicate the WHEN clause Boolean inside the subquery predicate

For example:

SQL> --
SQL> -- Change the following syntax from
SQL> --

.

.

.
cont> WHEN A IS NOT NULL
cont> THEN (SELECT A FROM T WHERE B = Y)

.

.

.
SQL> --
SQL> -- to include the Boolean inside the subquery
SQL> --

.

.

.
cont> WHEN A IS NOT NULL
cont> THEN (SELECT A FROM T WHERE B = Y AND A IS NOT NULL)

.

.

.

In this example, when the WHEN clause evaluates as FALSE, so will the
WHERE predicate from the subquery and, therefore, will return no rows.

In either of the above cases, the correct results are returned from the query.

2.6.8.4 DECODE Function
The DECODE function compares an expression to each supplied search value
until a match is found. When a match is found, DECODE returns the result
in the corresponding result field. If no match is found, DECODE returns the
default if it is specified, null if no default is specified.

Language and Syntax Elements 2–199

Example: Using the DECODE function

SQL> SELECT employee_id, last_name, first_name,
cont> DECODE (status_code, ’1’, ’Full time’,
cont> ’2’, ’Part time’)
cont> FROM employees
cont> LIMIT TO 5 ROWS;
EMPLOYEE_ID LAST_NAME FIRST_NAME
00165 Smith Terry Part time
00190 O’Sullivan Rick Full time
00187 Lasch Stan Full time
00169 Gray Susan Full time
00176 Hastings Norman Full time
5 rows selected

2.6.8.5 GREATEST and LEAST Functions
The GREATEST and LEAST functions accept a list of two or more value
expressions (all of which must be of comparable types) and return the greatest
value from the list for the GREATEST function and the least value from the
list for the LEAST function. The value expressions specified can be column
references, subselects, function calls, literal values, and other complex value
expressions.

The data type of the resulting expression is a common data type to which all
value expressions in the list can be converted. For example, LEAST(10, 10.3,
123E100) results in a DOUBLE PRECISION result because at least one literal
is DOUBLE PRECISION.

If the result data type resolves to a fixed CHARACTER string, then
GREATEST and LEAST return a CHARACTER VARYING (also known as
VARCHAR) string with the maximum length.

The NULL keyword can appear in the list but is ignored. However, not all
value expressions can be specified as NULL. That is, a non-NULL value
expression must be in the list so that the data type for the expression can be
determined.

The GREATEST and LEAST functions can result in NULL only if at run time
all value expressions result in NULL.

If DATE VMS literals are used as an argument to the GREATEST or LEAST
function, the date string must be prefixed with the type DATE VMS so that
SQL will accept it as a DATE VMS literal and not a string literal. See the
following examples.

Examples: Using the GREATEST and LEAST functions

2–200 Language and Syntax Elements

Example 1 Using CHARACTER Versus DATE VMS Literals

SQL> -- Different results are returned by the LEAST function (and
SQL> -- the GREATEST function) if the parameters are treated as
SQL> -- CHARACTER or DATE VMS literals. This is because it is
SQL> -- the data types of the source expressions that determine the
SQL> -- the result data type of the LEAST (and GREATEST) functions.
SQL> select LEAST (’1-APR-2001’, ’10-JAN-2000’),
cont> LEAST (DATE VMS’1-APR-2001’, DATE VMS’10-JAN-2000’)
cont> from rdb$database;

1-APR-2001 10-JAN-2000 00:00:00.00
1 row selected

Example 2 finds the least value for the birthday of employees from two
employees tables.

Example 2 Using the LEAST Function

SQL> SELECT LEAST (M.BIRTHDAY, E.BIRTHDAY, :SUPPLIED_DATE)
cont> FROM EMPLOYEES E, JOB_HISTORY JH, DEPARTMENTS D, EMPLOYEES M
cont> WHERE E.EMPLOYEE_ID = JH.EMPLOYEE_ID AND
cont> ...

2.6.8.6 NULLIF Expressions
The NULLIF expression is used to substitute NULL when two value
expressions are equal. For example, if the data stored in column ADDRESS_
DATA_1 or ADDRESS_DATA_2 are space characters, the NULLIF expression
replaces the space value with the NULL value.

SQL> BEGIN
cont> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
cont> ADDRESS_DATA_1, ADDRESS_DATA_2)
cont> VALUES
cont> (:EMP_ID, ’Clinton’, ’William’,
cont> NULLIF(:ADD_1, ’ ’),
cont> NULLIF(:ADD_2, ’ ’));
cont> END;
SQL>
SQL> SELECT LAST_NAME, ADDRESS_DATA_1, ADDRESS_DATA_2
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = :EMP_ID;
LAST_NAME ADDRESS_DATA_1 ADDRESS_DATA_2
Clinton NULL NULL
1 row selected

Language and Syntax Elements 2–201

The following example substitutes NULL when the MIDDLE_INITIAL column
of the EMPLOYEES table contains space characters:

SQL> SELECT LAST_NAME,
cont> NULLIF (MIDDLE_INITIAL, ’ ’),
cont> FIRST_NAME
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID IN (’00191’, ’00198’);
LAST_NAME FIRST_NAME
Pfeiffer I Karen
Gehr NULL Leslie
2 rows selected

2.6.8.7 NVL2 Expressions
NVL2 lets you compute a value based on whether a specified expression is
null or not null. If the first value expression is not null then the second
value expression is returned as the function result. Otherwise, the final value
expression is returned. The data type function is derived as a common data
type of the second and third value expressions.

For example, when the JOB_END date in JOB_HISTORY is NULL then that
indicates the current job for that employee. The following example uses NVL2
to annotate the output from a query on JOB_HISTORY displaying either
"current job" or "prior job" based on the NULL attribute of the JOB_END
column.

SQL> select employee_id, job_start, job_end,
cont> NVL2 (job_end, ’prior job’, ’current job’)
cont> from job_history
cont> where employee_id < ’00180’
cont> order by employee_id, job_start;
EMPLOYEE_ID JOB_START JOB_END
00164 5-Jul-1980 20-Sep-1981 prior job
00164 21-Sep-1981 NULL current job
00165 1-Jul-1975 4-Sep-1977 prior job
00165 5-Sep-1977 7-Apr-1979 prior job
00165 8-Apr-1979 7-Mar-1981 prior job
00165 8-Mar-1981 NULL current job
.
.
.

The following example shows whether the income of some employees is made
up of SALARY plus COMMISSION, or just SALARY, depending on whether the
COMMISSION_PCT column of EMPLOYEES is null or not.

2–202 Language and Syntax Elements

SQL> SELECT last_name, salary_amount,
cont> NVL2 (commission_pct,
cont> salary_amount + (salary_amount * commission_pct),
cont> salary_amount) as Income edit using SALARY
cont> FROM employees e, salary_history sh
cont> WHERE last_name like ’B%’
cont> and e.employee_id = sh.employee_id
cont> and salary_end is null
cont> ORDER BY last_name;
E.LAST_NAME SH.SALARY_AMOUNT INCOME
Babbin $20,150.00 $20,956.00
Bartlett $14,817.00 $15,261.51
Bartlett $38,223.00 $38,987.46
Belliveau $54,649.00 $55,741.98
Blount $63,080.00 $64,341.60
Boyd $30,275.00 $30,275.00
Boyd $24,166.00 $24,166.00
Brown $50,357.00 $50,357.00
Burton $23,053.00 $23,053.00
9 rows selected
SQL>

2.6.8.8 SIGN Function
SIGN returns an INTEGER value. SIGN accepts any numeric (fixed or
floating) or interval value expression. If the value expression evaluates
to NULL, then the SIGN function returns NULL. If the value expression
evaluates to a negative value, then SIGN returns -1; if the value is positive
then SIGN returns 1; otherwise a zero will be returned.

Usage Notes:

• The SQL_FUNCTIONS script continues to add the SIGN function to the
database. However, this function is now deprecated and is retained only for
backward compatibility with applications built using that function. This
function will be removed from a future release of the SYS$LIBRARY:SQL_
FUNCTIONSnn.SQL script.

Example: Using SIGN Builtin Function

This example computes delayed departures from the LAYOVER table.

SQL> select arr_date,
cont> dep_date,
cont> DECODE (SIGN ((dep_date - arr_date) day(9)),
cont> -1, ’date error - can not depart before arrival’,
cont> 0, ’same day departure’,
cont> 1, ’delayed’)
cont> from LAYOVER;

Language and Syntax Elements 2–203

2005-12-22 2006-01-20 delayed
2005-12-23 2005-12-25 delayed
2006-01-30 2006-02-01 delayed
2006-02-06 2006-02-09 delayed
2006-01-24 2006-01-26 delayed
2006-02-02 2006-02-19 delayed
2007-02-10 2007-02-16 delayed
2007-02-20 2007-02-26 delayed
2007-05-29 2007-06-08 delayed
2007-06-12 2007-06-26 delayed
2007-05-15 2007-05-21 delayed
2007-09-10 2007-09-14 delayed
2007-09-04 2007-09-06 delayed
2007-09-19 2007-09-20 delayed
2007-09-21 2007-09-24 delayed
15 rows selected

2.7 Predicates
A predicate specifies a condition that SQL evaluates as true, false, or
unknown. Predicates are also called conditional expressions. You can specify
several different types of predicates with different conditional operators. The
different types of predicates are:

• Basic

• BETWEEN

• Complex

• CONTAINING

• EXISTS

• IN

• IS NULL

• LIKE

• MATCHING

• Quantified

• SINGLE

• STARTING WITH

• UNIQUE

When you compare character value expressions, if automatic translation has
not been enabled, character sets of those value expressions must be identical.

2–204 Language and Syntax Elements

Some predicates have a specific behavior when used with the DEC
Multinational Character Set (MCS). This behavior is described in the following
sections.

The following list describes multinational character set behavior that applies
to predicates:

• The character ñ is always treated as different from the character n, in
keeping with the practices of the Spanish language. In a similar manner,
the character ç is treated the same as the character c, in keeping with the
practices of the French language.

• The character ü is treated the same as the character u for many languages,
but is sorted between the characters x and z (with the ys) for Danish,
Norwegian, and Finnish languages.

The following diagram shows the syntax for predicates:

predicate =

basic-predicate
NOT between-predicate

containing-predicate
exists-predicate
in-predicate
is-null-predicate
like-predicate
matching-predicate
quantified-predicate
single-predicate
unique-predicate
starting-with-predicate
(predicate)

AND
OR

Table 2–29 summarizes how SQL evaluates the different conditional operators.

Language and Syntax Elements 2–205

Table 2–29 SQL Conditional Operators

Comparison
Operator Predicate Is:

= True if the two value expressions are equal.

<> True if the two value expressions are not equal.

^= True if the two value expressions are not equal.

!= True if the two value expressions are not equal. This basic
predicate is only available if you set the ORACLE LEVEL1 or
ORACLE LEVEL2 dialects.

< True if the first value expression is less than the second value
expression.

<= True if the first value expression is less than or equal to the
second value expression.

> True if the first value expression is greater than the second
value expression.

>= True if the first value expression is greater than or equal to the
second value expression.

ALL True if the specified relationship is true for every row (which
must be only a single column wide) of the result table specified
by the column select expression. Also true if the result table is
empty. ALL is a type of quantified predicate.

ANY (SOME) True if the specified relationship is true for at least one row
(which must be only a single column wide) of the result table
specified by the column select expression. ANY is a type
of quantified predicate. (SOME is the same as ANY. The
keywords are synonymous.)

BETWEEN True if the first value expression is greater than the second
value expression and less than the third value expression, or
equal to one of them.

NOT BETWEEN True if the first value expression is not greater than the second
value expression and less than the third value expression, and
not equal to either of them.

CONTAINING True if the string specified by the second value expression
is found within the string specified by the first. Not case
sensitive.

NOT CONTAINING True if the string specified by the second value expression is
not found within the string specified by the first. Not case
sensitive.

(continued on next page)

2–206 Language and Syntax Elements

Table 2–29 (Cont.) SQL Conditional Operators

Comparison
Operator Predicate Is:

EXISTS True only if the number of rows in the result table specified by
the column select expression is not zero.

NOT EXISTS True only if the number of rows in the result table specified by
the column select expression is not zero.

IN True if the value expression on the left is equal to one of the
values specified by the list of value expressions (including
column select expressions) on the right.

NOT IN True if the value expression on the left is not equal to any of
the values specified by the list of value expressions or column
select expressions on the right.

IS NULL True if the value expression is null.

IS NOT NULL True if the value expression is not null.

LIKE True if the first expression matches the pattern in the
second value expression. LIKE uses these special characters:

% (percent sign) Matches any string
_ (underscore) Matches any single character

NOT LIKE True if the first expression does not match the pattern in the
second value expression.

MATCHING True if the first expression matches the pattern in the second
value expression. MATCHING uses these special characters:

* (asterisk) Matches any string
% (percent sign) Matches any single character

NOT MATCHING True if the first expression does not match the pattern in the
second value expression.

(continued on next page)

Language and Syntax Elements 2–207

Table 2–29 (Cont.) SQL Conditional Operators

Comparison
Operator Predicate Is:

SINGLE True if the result table specified by the column select expression
includes exactly one row.

NOT SINGLE True if the result table specified by the column select expression
includes more than one row or zero rows.

STARTING WITH True if the first characters of the first value expression match
those specified in the second value expression. Case sensitive.

NOT STARTING
WITH

True if the first characters of the first value expression do not
match those specified in the second value expression. Case
sensitive.

UNIQUE True if no duplicate rows exist in the result table of a column
select expression.

NOT UNIQUE True if no duplicate rows exist in the result table of a column
select expression.

Note

Except for the IS NULL, EXISTS, and SINGLE operators, if either
operand in a predicate is null, the value of the predicate is unknown.

You cannot use a value of the LIST OF BYTE VARYING data type for
either operand in a comparison predicate. For more information, see
Section 2.3.7.

When you use the DEC_MCS or ASCII character set, SQL compares
character string literals according to the ASCII collating sequence.
Therefore, it considers lowercase letters to have a greater value than
uppercase letters, and considers the letters near the beginning of the
alphabet to have a lesser value than those near the end.

’a’ > ’A’
’a’ > ’Z’
’a’ < ’z’
’A’ < ’z’
’A’ < ’Z’

2–208 Language and Syntax Elements

2.7.1 Basic Predicate
A basic predicate compares two values.

basic-predicate =

value-expr = value-expr
<>
^=
!=
<
<=
>
>=

See Section 2.6 for details on value expressions.

Example: Using a basic predicate in a SELECT statement

The following SELECT statement uses a basic predicate that contains a column
select expression to find employees who make a higher-than-average salary:

SQL> SELECT DISTINCT EMPLOYEE_ID FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT >
cont> (SELECT AVG(SALARY_AMOUNT)
cont> FROM SALARY_HISTORY);
EMPLOYEE_ID
00164
00168

.

.

.

In this example, the predicate is:

SALARY AMOUNT > (SELECT AVG(SALARY_AMOUNT) FROM SALARY_HISTORY)

In addition to the <> basic predicate, the ^= and != are available for inequality
comparisons. However, != is only available if you set the ORACLE LEVEL1
dialect. 1 See SET DIALECT Statement for information on setting dialects.

1 Since in other dialects ! is considered a comment character.

Language and Syntax Elements 2–209

2.7.2 BETWEEN Predicate
A BETWEEN predicate compares a value with a range of values.
between-predicate =

value-expr BETWEEN
NOT ASYMMETRIC

SYMMETRIC

value-expr AND value-expr

See Section 2.6 for details on value expressions.

ASYMMETRIC is the default.

The BETWEEN predicate is a simpler way of representing conditions that can
be represented using other conditional operators:

value1 BETWEEN value2 AND value3

Using the BETWEEN predicate is the same as using the following complex
predicate:

value1 >= value2
AND
value1 <= value3

ASYMMETRIC
By default, the BETWEEN predicate depends on the ordering of the values.
i.e. the first value expression needed to be less than or equal to the second
value expression and was evaluated as equivalent to: V0 � V1 and V0 � V2.
This is demonstrated by the following example.

SQL> select a from t where a between asymmetric 2 and 4;
A
2
3
4

3 rows selected

The following query returns zero matches because the value expressions are
out of order.

SQL> select a from t where a between asymmetric 4 and 2;
0 rows selected

2–210 Language and Syntax Elements

SYMMETRIC
This alternate format for BETWEEN allows simpler comparision of unordered
value expressions, as can be seen in these examples which return the same
results. This comparision is equivalent to: (V0 � V1 and V0 � V2) or (V0 � V2
and V0 � V1).

For example:

SQL> select a from t where a between symmetric 2 and 4;
A
2
3
4

3 rows selected
SQL> select a from t where a between symmetric 4 and 2;

A
2
3
4

3 rows selected

Note that NOT BETWEEN operation also changes when using SYMMETRIC

This first query using ASYMMETRIC returns all values not in the specified
range.

SQL> select a from t where a not between asymmetric 2 and 4;
A
1
5

2 rows selected

In this next query the range values is out of order and the BETWEEN
predicate returns an empty set of matches, and therefore NOT BETWEEN
returns all rows in the example table.

SQL> select a from t where a not between asymmetric 4 and 2;
A
1
2
3
4
5

5 rows selected

Contrast this to SYMMETRIC which returns the same set of values for either
ordering of values:

Language and Syntax Elements 2–211

SQL> select a from t where a not between symmetric 2 and 4;
A
1
5

2 rows selected
SQL> select a from t where a not between symmetric 4 and 2;

A
1
5

2 rows selected

Example: Using the BETWEEN predicate with character columns

The following example uses a BETWEEN predicate to find the names of
employees whose names begin with the character B:

SQL> SELECT LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME
cont> BETWEEN ’B’ AND ’C’;
LAST_NAME
Babbin
Bartlett
Bartlett
Belliveau
Blount
Boyd
Boyd
Brown
Burton
9 rows selected

This example can retrieve more names than those of employees whose last
names begin with the character B. An employee whose last name was C would
be included in the result. To omit that employee, use the following BETWEEN
predicate:

BETWEEN ’B’ AND
’Bzzzzzz’.

2.7.3 Complex Predicate
A complex predicate combines any number of predicates with the Boolean
operators AND, OR, and NOT. Boolean operators are also called logical
operators.

2–212 Language and Syntax Elements

complex-predicate =

complex-predicate
NOT predicate AND

OR

When nesting predicates, you must enclose them in parentheses. SQL
evaluates parts of a complex predicate in this order:

1. Predicates enclosed in parentheses

If there are nested predicates in parentheses, the innermost predicate is
evaluated first.

2. Predicates preceded by NOT

3. Predicates combined with AND

4. Predicates combined with OR

Table 2–30, Table 2–31, and Table 2–32 summarize how SQL evaluates
predicates combined with Boolean operators. Such tables are often called
truth tables.

Language and Syntax Elements 2–213

Table 2–30 Boolean Operator: AND

A B A AND B

True False False

True True True

False False False

False True False

True Unknown Unknown

False Unknown False

Unknown True Unknown

Unknown False False

Unknown Unknown Unknown

Table 2–31 Boolean Operator: OR

A B A OR B

True False True

True True True

False False False

False True True

True Unknown True

False Unknown Unknown

Unknown True True

Unknown False Unknown

Unknown Unknown Unknown

Table 2–32 Boolean Operator: NOT

A NOT A

True False

False True

Unknown Unknown

2–214 Language and Syntax Elements

Note

The fact that NOT A is evaluated as unknown when A is unknown can
be confusing in queries that refer to tables with null values. It means
that a NOT predicate is not necessarily evaluated as true for all rows
of a column for which the same predicate without NOT is evaluated
as false. In other words, the result of a query that contains NOT A is
not necessarily the complement of the result of the same query that
contains only A.

2.7.4 CONTAINING Predicate
A CONTAINING predicate tests whether or not the string expression specified
in the second value expression is contained within the string expression
specified by the first.

containing-predicate =

value-expr CONTAINING value-expr
NOT

The CONTAINING predicate is not case sensitive.

The CONTAINING predicate is sensitive to diacritical markings used in any
Multinational Character Set. Therefore, a matches a, but neither matches á, à,
ä, Á, À, Â and so on.

In Spanish, ch and ll are treated as if they were unique single characters.

If you use a collating sequence, the CONTAINING predicate will not be
sensitive to diacritical markings used in any Multinational Character Set.

Example: Using the CONTAINING predicate

SQL> -- Note that CONTAINING is not case sensitive.
SQL> -- Although ’TOL’ is typed in all uppercase letters,
SQL> -- SQL still returns Toliver, which is
SQL> -- in uppercase and lowercase letters.
SQL> --
SQL> SELECT E.LAST_NAME FROM EMPLOYEES E WHERE
cont> E.LAST_NAME CONTAINING ’TOL’;
LAST_NAME
Toliver
1 row selected

Language and Syntax Elements 2–215

2.7.5 EXISTS Predicate
An EXISTS predicate tests whether or not the result table specified in a
column select expression is empty.

exists-predicate =

EXISTS (select-expr)

If the result table specified in the select expression has one or more rows, SQL
evaluates the EXISTS predicate as true. Otherwise, the predicate is false. An
EXISTS predicate cannot be unknown.

Because it only checks for the existence of rows, an EXISTS predicate does
not require that the result table from its column select expression be a single
column wide (see Section 2.8.2 for details on column select expressions). For
EXISTS predicates, an asterisk (*) wildcard in the column select expression
can refer to a multicolumn table (see the following example).

Example: Using the EXISTS predicate

The following example illustrates the EXISTS predicate. It parallels Example 2
in Section 2.7.10, which uses the = ANY predicate to find employees with
college degrees, and the NOT (= ANY) predicate to find the names of employees
who do not have college degrees.

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE EXISTS
cont> -- Notice that the column select expression uses a wildcard,
cont> -- which is valid for multicolumn tables only in EXISTS
cont> -- predicates:
cont> (SELECT *
cont> FROM DEGREES D
cont> WHERE D.EMPLOYEE_ID =
cont> E.EMPLOYEE_ID);
LAST_NAME EMPLOYEE_ID
Toliver 00164
Smith 00165
Dietrich 00166

. .

. .

. .
Blount 00418
MacDonald 00435
Herbener 00471
99 rows selected

2–216 Language and Syntax Elements

2.7.6 IN Predicate
An IN predicate compares a value with another value or a collection of values.

in-predicate =

value-expr IN value-expr
NOT (value-expr)

select-expr
,

See Section 2.6 for details on value expressions. See Section 2.8.2 for details on
column select expressions.

All forms of the IN predicates can be represented using other conditional
operators.

• value-expr IN value-expr

is the same as

value-expr IN (value-expr)

which is the same as the basic predicate

value-expr = value-expr

(as long as the value expression on the right is not a host structure that
expands to more than one parameter)

• value-expr IN (value-expr1, value-expr2, value-expr3)

is the same as the complex predicate

value-expr = value-expr1
OR
value-expr = value-expr2
OR
value-expr = value-expr3

(in this case, any of the value expressions on the right can be a host
structure that expands to more than one parameter)

• value-expr IN (col-select-expr1, val-expr2, col-select-expr3)

is the same as the quantified predicate

value-expr = ANY (col-select-expr1)
OR
value-expr = val-expr2
OR
value-expr = ANY (col-select-expr3)

Language and Syntax Elements 2–217

(in this case, any of the value expressions on the right can be a host
structure that expands to more than one parameter)

Example: Using the IN predicate with a value expression list

The following example uses an IN predicate with a list of value expressions
(in this case, string literals) to find the number of employees who live in New
England:

SQL> SELECT COUNT(*)
cont> FROM EMPLOYEES
cont> WHERE STATE IN
cont> (’CT’, ’RI’, ’MA’, ’VT’, ’NH’, ’ME’);

100
1 row selected

2.7.7 IS NULL Predicate
An IS NULL predicate tests for null values in value expressions.

is-null-predicate =

value-expr IS NULL
NOT

See Section 2.6 for details on value expressions.

SQL never evaluates an IS NULL predicate as unknown; it is always true or
false. If the value expression is null, SQL evaluates the predicate as true. If
the value expression is not null, the predicate is false.

Use an IS NULL predicate to retrieve rows with null values in particular
columns. An IS NULL predicate is the only way to construct a query that
includes rows in a result table by testing whether or not particular columns in
the rows have null values. Other constructions such as NOT LIKE or <> (not
equal) do not include rows with null values in their result tables.

Example: Retrieving rows based on null values with the IS NULL predicate

The following example illustrates that you must use IS NULL predicates to
retrieve rows with null values:

SQL> -- The following query does not include rows that
SQL> -- have null values in the MIDDLE_INITIAL column:
SQL> --
SQL> SELECT COUNT(*) FROM EMPLOYEES
cont> WHERE NOT (MIDDLE_INITIAL = ’V’);

60
1 row selected

2–218 Language and Syntax Elements

SQL> --
SQL> -- To get a count of rows that have no values stored in
SQL> -- the MIDDLE_INITIAL column, use an IS NULL predicate.
SQL> --
SQL> SELECT COUNT(*) FROM EMPLOYEES
cont> WHERE MIDDLE_INITIAL IS NULL;

36
1 row selected

2.7.8 LIKE Predicate
A LIKE predicate searches character string literals for pattern matches. The
LIKE predicate is case sensitive; it considers uppercase and lowercase forms of
the same character to be different characters.

Because the LIKE predicate is case sensitive, searches for uppercase characters
do not include lowercase characters in any Multinational Character Set. The
reverse is also true. For example, LIKE "Ç" will retrieve a different set of
records than LIKE "ç".

The LIKE predicate is sensitive to diacritical markings used in any
Multinational Character Set. Therefore, a matches a, but neither matches
á, à, ä, Á, À, Â and so on.

In Spanish, ch and ll are treated as if they are unique single letters. For
example, if a domain is defined with the collating sequence SPANISH, then
LIKE "c%" will not retrieve the word char but will retrieve the word cat.

The LIKE predicate has this form:

like-predicate =

value-expr LIKE <pattern>
NOT

ESCAPE <escape-character>
IGNORE CASE

pattern =

char-value-expr

Language and Syntax Elements 2–219

escape-character =

char-value-expr

SQL interprets the value-expr argument as a character string and compares it
to the pattern. The pattern must be a value expression with a text data type.

Within the pattern, the percent sign (%), underscore (_), and escape
characters have special meaning.

• The percent sign represents any string of characters, including no
characters at all. The percent sign is a wildcard character.

• The underscore represents any single character.

• An escape character causes SQL to interpret a wildcard character as itself
to search for character strings containing the wildcard character. The value
of the escape character must be 1 character in length.

Table 2–33 explains the valid sequences allowed for escape characters.

Table 2–33 Escape Character Sequences

Character in Pattern Character Matched

% any string

_ any character

escape-character % %

escape-character _ _

escape-character escape-character escape-character

You can only specify the percent sign, underscore, or the escape-character
itself. Any other character is invalid and an error is returned.

All other characters represent themselves.

Oracle Rdb can improve the performance of certain SQL queries that include
LIKE predicates that do not contain IGNORE CASE clauses. This type of
query optimization occurs when the LIKE operator string begins with a
pattern of one or more characters that does not include the wildcard character
(% or _) or the escape character.

2–220 Language and Syntax Elements

For example, Oracle Rdb can optimize the following LIKE predicate because
the LIKE predicate string begins with the pattern ‘‘RAN’’, which does not
include the wildcard character or the escape character and contains no
IGNORE CASE clause:

SELECT * FROM EMPLOYEES WHERE LAST_NAME LIKE ’RAN%D%’;

When the prefix of the pattern is known, namely ‘‘RAN’’, then Oracle Rdb
uses that prefix to establish an index range to improve query performance.
The pattern can be any arbitrary expression, and does not need to be a
compile-time constant.

In contrast, Oracle Rdb does not apply the index range optimization to the
LIKE predicate of the following query because the pattern begins with the
wildcard character which prevents efficient index retrieval:

SELECT * FROM EMPLOYEES WHERE LAST_NAME LIKE ’%RAN’;

The LIKE predicate has the following restrictions:

• The LIKE predicate does not pad its argument (pattern) with blank spaces
for comparison with value expressions that are not the same length as the
argument. This means that the LIKE predicate does not find matches for
some patterns when you might expect it to find matches.

For example, the CHAR data type is a fixed-length string. When you insert
data into a CHAR column and the data has fewer characters than the
column definition, the remainder of the string literal is padded with blank
spaces. In contrast, a VARCHAR data type is a varying-length string. The
inserted string literal is not padded with blank spaces. Because the LIKE
predicate does a character-for-character comparison, the value in a CHAR
data type column, which is padded with blank spaces, is not the same as
a VARCHAR data type column that is not padded with blank spaces. The
following example illustrates this point:

SQL> SHOW TABLE (COLUMNS) T1;
Information for table T1

Columns for table T1:
Column Name Data Type Domain
----------- --------- ------
CHR CHAR(10)
VARCHR VARCHAR(10)

Language and Syntax Elements 2–221

SQL> INSERT INTO T1
cont> (CHR, VARCHR)
cont> VALUES (’abc’, ’abc’);
1 row inserted
SQL> --
SQL> SELECT CHR FROM T1 WHERE CHR LIKE ’abc’;
0 rows selected
SQL> --
SQL> SELECT VARCHR FROM T1 WHERE VARCHR LIKE ’abc’;
VARCHR
abc
1 row selected

In the previous example, the same string literal values are inserted into
the CHR and VARCHR columns. However, the LIKE predicate returns
different results because the CHAR data type pads the remainder of the
string literal with seven blank spaces and the LIKE predicate does not.
If you want to select the row in the CHR column, you need to issue the
following SELECT command:

SQL> SELECT CHR FROM T1 WHERE CHR LIKE ’abc ’; -- abc plus 7 spaces
CHR
abc

1 row selected

When you are declaring host variables for pattern matching, use the
VARCHAR data type to avoid padding with blank spaces.

• When used with a column reference, the LIKE predicate expects a text
data type for the pattern and does not convert a numeric data type to text.

• If automatic translation has not been enabled, the character set of the
value expression, pattern, and escape character must be identical.

• If the character set of the value expression contains ASCII, you must use
the ASCII percent sign (%) or underscore (_) as wildcard characters. For
example, if the character set is DEC_KANJI, you must use the ASCII
percent sign (%) or underscore (_) as wildcard characters. Table 2–34
shows the equivalent wildcard characters for each character set.

• If the character set of the value expression does not contain ASCII
characters, you must use the percent sign or underscore characters from
that character set to represent the wildcard characters.

• If you want the LIKE predicate to ignore the distinction between uppercase
and lowercase characters, specify the IGNORE CASE keywords as part of
the LIKE predicate. It may appear after the pattern string along with an
ESCAPE clause.

2–222 Language and Syntax Elements

SQL ignores the IGNORE CASE clause if the character set of the value
expression does not have uppercase and lowercase characters.

See Section 2.6 for details on value expressions. See Section 2.4 for details on
literals and Section 2.2.13 for information on parameters.

Table 2–34 shows the wildcard characters for the supported character sets.

Table 2–34 Wildcard Characters

Character Set Underscore Percent

DEC_MCS %X’5F’ %X’25’

BIG5 %X’A1C4’ %X’A248’

AL24UTFFSS %X’5F’ %X’25’

ISOLATINARABIC %X’5F’ %X’25’

ASCII %X’5F’ %X’25’

DOS_LATIN1 %X’5F’ %X’25’

DOS_LATINUS %X’5F’ %X’25’

GB18030 %X’5F’ %X’25’

ISOLATIN1 %X’5F’ %X’25’

ISOLATIN9 %X’5F’ %X’25’

ISOLATINCYRILLIC %X’5F’ %X’25’

ISOLATINGREEK %X’5F’ %X’25’

ISOLATINHEBREW %X’5F’ %X’25’

DEVANAGARI %X’5F’ %X’25’

KATAKANA %X’5F’ %X’25’

KANJI %X’A1B2’ %X’A1F3’

DEC_KANJI %X’5F’ %X’25’

HANZI %X’A3DF’ %X’A3A5’

DEC_HANZI %X’5F’ %X’25’

KOREAN %X’A3DF’ %X’A3A5’

DEC_KOREAN %X’5F’ %X’25’

HANYU %X’A2A8’ %X’A2A5’

DEC_SICGCC %X’5F’ %X’25’

(continued on next page)

Language and Syntax Elements 2–223

Table 2–34 (Cont.) Wildcard Characters

Character Set Underscore Percent

DEC_HANYU %X’5F’ %X’25’

SHIFT_JIS %X’5F’ %X’25’

TACTIS %X’5F’ %X’25’

HEX %X’3546’ %X’3235’

UNICODE %X’005F’ %X’0025’

UTF8 %X’5F’ %X’25’

WIN_ARABIC %X’5F’ %X’25’

WIN_GREEK %X’5F’ %X’25’

WIN_CYRILLIC %X’5F’ %X’25’

WIN_HEBREW %X’5F’ %X’25’

WIN_LATIN1 %X’5F’ %X’25’

Example 1: Using the LIKE predicate and arguments without spaces

SQL> -- Notice that the LAST_NAME column
SQL> -- in the EMPLOYEES table has 14 characters:
SQL> SHOW TABLE EMPLOYEES
Information for table EMPLOYEES

Comment on table EMPLOYEES:
personal information about each employee

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
LAST_NAME CHAR(14) LAST_NAME_DOM

.

.

.

SQL> -- That means the following statement will not find the row for
SQL> -- Toliver because the LIKE predicate does not pad arguments with
SQL> -- blanks, and the character string "Toliver" only has 7 characters.
SQL> --
SQL> SELECT LAST_NAME FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’Toliver’;
0 rows selected

2–224 Language and Syntax Elements

SQL> --
SQL> -- To find the row for Toliver using the LIKE predicate, use the
SQL> -- percent sign wildcard. Note that you can also explicitly pad
SQL> -- the string by typing 7 underscore characters following the
SQL> -- word Toliver.
SQL> --
SQL> SELECT LAST_NAME FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’Toliver%’;
LAST_NAME
Toliver
1 row selected
SQL> --

Example 2: Using the LIKE predicate and the percent sign wildcard character

If one percent sign wildcard is used in conjunction with an underscore
character, the query retrieves all last names where on appears immediately
after the first character in the name. In this example, the underscore
represents the first character of the names, and a percent sign wildcard
represents any characters following on:

SQL> SELECT DISTINCT LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’_on%’;
LAST_NAME
Connolly
Lonergan
2 rows selected

If two percent sign wildcards are used, this query retrieves all last names
where on appears in any position in the name. The percent sign wildcards
represent any characters preceding and following on:

SQL> SELECT DISTINCT LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’%on%’;
LAST_NAME
Burton
Canonica
Clairmont
Clinton
Connolly
Goldstone
.
.
.

Example 3: Using the LIKE predicate with numeric data types

Language and Syntax Elements 2–225

The LIKE predicate also works with numeric data types, but compares the
values with string literals. Find the salaries that begin with the number 3.

SQL> SELECT SALARY_AMOUNT
cont> FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT LIKE ’3%’;
%SQL-I-NUMCMPTXT, Numeric column will be compared with string literal as text
SALARY_AMOUNT

30598.00
30880.00
.
.
.

This example is not another way of finding all the salaries in the range
between $30,000 and $39,999. If the SALARY_AMOUNT column contained the
value 398, the query would have retrieved it as well.

Example 4: Matching patterns with the LIKE predicate

Find the names of employees in which the letters on appear last in the last
name. Because the column LAST_NAME is 14 characters long (CHAR(14))
and the matching pattern in this example specifies 7 explicit spaces after the
sequence on, this query retrieves only 7-character names that end with on.

SQL> SELECT DISTINCT LAST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’%on ’;
LAST_NAME
Clinton
Jackson
Johnson
3 rows selected

Increasing the number of explicit blank spaces in the matching pattern causes
the query to retrieve shorter last names ending with the letters on. Decreasing
the number of explicit blank spaces in the matching pattern causes the query
to retrieve longer last names ending with the letters on.

Example 5: Using escape characters with the LIKE predicate

Find all the employees with a salary increase in the REMARKS column of
their SALARY_HISTORY record.

2–226 Language and Syntax Elements

SQL> SELECT LAST_NAME, REMARKS
cont> FROM SALARY_HISTORY
cont> WHERE REMARKS
cont> LIKE ’%&% increase%’ ESCAPE ’&’;
LAST_NAME REMARKS
Clinton 10% increase
Jackson 10% increase
Johnson 10% increase
3 rows selected

The LIKE predicate needs to search for a character string containing the
percent sign (%), which is a wildcard character. To search for the percent sign
itself, the query designates the ampersand (&) as an escape character that
stands for the percent sign in the search string.

Example 6: Matching case-sensitive patterns with the LIKE predicate

Find the last names of employees in which the characters boy are found.
Because the LIKE predicate is case sensitive and the LAST_NAME columns
were entered in uppercase and lowercase characters, it finds rows matching
%Boy%. However, it will not find any rows matching %BOY%.

SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES E
cont> WHERE LAST_NAME LIKE ’%Boy%’;
EMPLOYEE_ID LAST_NAME FIRST_NAME
00244 Boyd Ann
00226 Boyd James
2 rows selected
SQL> --
SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES E
cont> WHERE LAST_NAME LIKE ’%BOY%’;
0 rows selected
SQL> --You can also use the IGNORE CASE clause to get a case-insensitive match.
SQL> --Note that the % wildcard is used to search for padded
SQL> --characters that might be stored in the LAST_NAME column.
SQL> --
SQL> SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> WHERE LAST_NAME LIKE ’%BOY%’ IGNORE CASE;
EMPLOYEE_ID LAST_NAME FIRST_NAME
00244 Boyd Ann
00226 Boyd James
2 rows selected

Example 7: Using the LIKE predicate with a column reference

Language and Syntax Elements 2–227

The following example demonstrates how to use the LIKE predicate to match a
column reference:

SQL> CREATE TABLE PATTERN
cont> (A CHAR VARYING(10));
SQL> --
SQL> INSERT INTO PATTERN
cont> (A)
cont> VALUES
cont> (’T%’);
SQL> --
SQL> SELECT LAST_NAME FROM EMPLOYEES, PATTERN
cont> WHERE LAST_NAME LIKE
cont> (SELECT A FROM PATTERN);
EMPLOYEES.LAST_NAME
Tarbassian
Toliver
2 rows selected
SQL>

2.7.9 MATCHING Predicate
A MATCHING predicate searches character string literals for pattern matches.
The pattern string accepts the following pattern characters:

• * Matches any string of zero or more characters

• % Matches any single character

matching-predicate =

value-expr MATCHING <pattern>
NOT

pattern =

char-value-expr

Usage Notes

• If either of the expressions is null, the result is null.

• MATCHING predicate is not case sensitive; it considers uppercase and
lowercase forms of the same character to be a match.

• The MATCHING predicate is not sensitive to diacritical markings used in
the DEC Multinational Character Set.

2–228 Language and Syntax Elements

The following example shows the use of the MATCHING clause.

SQL> select last_name
cont> from employees
cont> where last_name matching ’%on*’;
LAST_NAME
Connolly
Lonergan
2 rows selected
SQL>

2.7.10 Quantified Predicate
A quantified predicate compares a value with a collection of values. It has
the same form as a basic predicate except that the second operand must be
a column select expression preceded by an ALL, ANY, or SOME comparison
operator.

quantified-predicate =

value-expr = ALL (col-select-expr)
<> ANY
^= SOME
!=
<
<=
>
>=

See Section 2.6 for details on value expressions. See Section 2.8.2 for details on
column select expressions.

Table 2–35 describes the value of the result based on the comparison of values
for the quantified predicate.

Table 2–35 Quantified Predicate Result Table

Comparison of Values Result

ALL Quantifier

If all comparisons are True True

If any comparisons are False False

If no comparisons are made True

(continued on next page)

Language and Syntax Elements 2–229

Table 2–35 (Cont.) Quantified Predicate Result Table

Comparison of Values Result

ALL Quantifier

Otherwise Unknown

SOME and ANY Quantifiers

If any comparisons are True True

If all comparisons are False False

If no comparisons are made True

Otherwise Unknown

Examples: Using the quantified predicate

Example 1: Using the quantified predicate with the ALL operator

The following example uses the ALL operator in a quantified predicate to find
the oldest and youngest employees:

SQL> SELECT FIRST_NAME, LAST_NAME, BIRTHDAY FROM EMPLOYEES
cont> WHERE
cont> BIRTHDAY <= ALL (SELECT BIRTHDAY FROM EMPLOYEES)
cont> OR
cont> BIRTHDAY >= ALL (SELECT BIRTHDAY FROM EMPLOYEES);
FIRST_NAME LAST_NAME BIRTHDAY
Rick O’Sullivan 12-JAN-1923
James Stornelli 10-JAN-1960
2 rows selected

2–230 Language and Syntax Elements

Example 2: Comparing quantified predicates

The following example uses the ANY operator in a quantified predicate to find
the names of employees with college degrees. This query could be worded as
‘‘Select all the names and identification numbers of employees where there is
at least one corresponding row in the DEGREES table.’’

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE E.EMPLOYEE_ID
cont> = ANY -- same as = SOME
cont> (SELECT D.EMPLOYEE_ID
cont> FROM DEGREES D);

From the previous example, you might expect that a similar query using the
<> ANY quantified predicate would return the names of employees who did not
have college degrees. The following example shows that such a query retrieves
all the rows in the EMPLOYEES table instead:

SQL>
SQL> -- Notice that the <> ANY predicate does *not* find
SQL> -- the names of employees without degrees. Instead, it retrieves
SQL> -- the names of employees from the EMPLOYEES table whose employee
SQL> -- IDs are not equal to any *one* of the EMPLOYEE_ID values in
SQL> -- the DEGREES table (in other words, every row in the EMPLOYEES table).
SQL> --
SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE E.EMPLOYEE_ID <> ANY
cont> (SELECT D.EMPLOYEE_ID
cont> FROM DEGREES D);
LAST_NAME EMPLOYEE_ID
Toliver 00164
Smith 00165
. .
. .
. .

SQL>
SQL> -- To retrieve the names of employees without degrees, use the
SQL> -- NOT Boolean operator to negate the = ANY quantified predicate.
SQL> -- (Another way to retrieve this information is with the
SQL> -- NOT EXISTS predicate.)
SQL> SELECT LAST_NAME, EMPLOYEE_ID
cont> FROM EMPLOYEES
cont> WHERE NOT (EMPLOYEE_ID = ANY
cont> (SELECT EMPLOYEE_ID FROM DEGREES));
LAST_NAME EMPLOYEE_ID
Goldstone 00178
1 row selected

Language and Syntax Elements 2–231

2.7.11 SINGLE Predicate
The SINGLE predicate tests whether or not the result table specified in the
column select expression has exactly one row. If it has exactly one row, SQL
evaluates the SINGLE predicate as true. If the result table has zero rows or
more than one row, the predicate is false.

SQL evaluates the NOT SINGLE predicate as true if the result table specified
in the select expression has zero rows or more than one row.

The SINGLE and NOT SINGLE predicates cannot be unknown.

The SINGLE predicate has the following form:

single-predicate =

SINGLE (select-expr)

Because it checks only for the existence of rows, a SINGLE predicate does
not require that the result table from its column select expression be a single
column wide (see Section 2.8.2 for details on column select expressions). For
SINGLE predicates, an asterisk (*) wildcard in the column select expression
can refer to a multicolumn table (as in the following example).

Example: Using the SINGLE predicate

The following example determines which employees have one degree:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID
cont> FROM EMPLOYEES E
cont> WHERE SINGLE
cont> --
cont> -- Notice that the column select expression uses a wildcard,
cont> -- which is valid for multicolumn tables in SINGLE predicates:
cont> --
cont> (SELECT * FROM DEGREES D
cont> WHERE D.EMPLOYEE_ID =
cont> E.EMPLOYEE_ID);
LAST_NAME EMPLOYEE_ID
Smith 00165
Wood 00170
Peters 00172
.
.
.

2–232 Language and Syntax Elements

2.7.12 STARTING WITH Predicate
The STARTING WITH predicate tests whether or not the first characters of
the first value expression match those specified in the second value expression.
The STARTING WITH predicate has the following form:

starting-with-predicate =

value-expr STARTING WITH value-expr
NOT

Because the STARTING WITH predicate is case sensitive, it searches for
uppercase characters and does not include lowercase characters for the DEC
Multinational Character Set; the reverse is also true. For example, STARTING
WITH ’Ç’ retrieves a set of records different from those retrieved by STARTING
WITH ’ç’.

The STARTING WITH predicate is sensitive to diacritical markings used in
any Multinational Character Set. Therefore, a matches a, but neither matches
á, à, ä, Á, À, Â and so on.

In Spanish, ch and ll are treated as if they were unique single characters. For
example, if a domain is defined with the collating sequence SPANISH, then
STARTING WITH ’c’ does not retrieve the word char, but retrieves the word cat.

Example: Using the STARTING WITH predicate

The following example shows how the STARTING WITH predicate displays
last names and postal codes of employees whose postal codes begin with 030:

SQL> SELECT E.LAST_NAME, E.POSTAL_CODE FROM EMPLOYEES E
cont> WHERE E.POSTAL_CODE STARTING WITH ’030’;
LAST_NAME POSTAL_CODE
Nash 03044
.
.
.

Johnson 03055
Klein 03055
9 rows selected

Language and Syntax Elements 2–233

2.7.13 UNIQUE Predicate
The UNIQUE predicate is used to determine if duplicate rows exist in the
result table of a column select expression. Note that the UNIQUE predicate
(in compliance with the SQL language standard) ignores rows with a NULL
column value and ensures uniqueness for the other column values. Contrast
this with the SINGLE predicate, which considers a single column value of
NULL as a match for any other NULL value in the same column.

unique-predicate =

UNIQUE (col-select-expr)

If any two rows in the expression are equal to one another, the UNIQUE
predicate evaluates to false.

The following example determines those cities in which one and only one
employee from the EMPLOYEES database lives.

SQL> SELECT E.LAST_NAME, E.CITY FROM EMPLOYEES E
cont> WHERE UNIQUE
cont> (SELECT * FROM EMPLOYEES EMP
cont> WHERE EMP.CITY=E.CITY);
LAST_NAME CITY
Harrison Boston
Smith Bristol
McElroy Cambridge
Kilpatrick Marlow
Sciacca Munsonville
Vormelker Rochester
Dement Sanbornton
Babbin Sanbornville
Keisling Twin Mountain
Ziemke Winnisquam
Johnston Wolfeboro
11 rows selected

2.8 Select Expressions and Column Select Expressions
Two fundamental elements of SQL syntax are the select expression and the
column select expression. Select expressions specify result tables and column
select expressions return a scalar value. A result table is an intermediate
table derived from some combination of the table references identified in the
FROM clause of the expression. A table reference is a base table, view, derived
table, or a joined table.

2–234 Language and Syntax Elements

Select expressions are the basis for the SELECT, DECLARE CURSOR, FOR
cursor loop, CREATE VIEW, and INSERT . . . SELECT statements. Select
expressions specify a result table to be retrieved from the database or to be
stored in the database, and are derived from some combination of the table
references identified in the FROM clause of the expression.

Column select expressions are select expressions that specify a one-column
result table and can be nested within predicates and (if they specify a single
value) value expressions.

Table 2–36 summarizes how select expressions and column select expressions
are used with other statements. The remainder of this section describes select
expressions and column select expressions in detail.

Table 2–36 Summary of Different Forms of the Select Statement

Form Usage Description Also Called

SELECT
statement

Least restrictive form,
for general interactive
or dynamic use. See
the SELECT Statement:
General Form.

Select expression.

Select
expression

Basic form of SELECT.
Used in:

• SELECT

• DECLARE
CURSOR

• CREATE VIEW

• INSERT . . .
SELECT

See Section 2.8.1 Query
specification
(ANSI/ISO
SQL)

(continued on next page)

Language and Syntax Elements 2–235

Table 2–36 (Cont.) Summary of Different Forms of the Select Statement

Form Usage Description Also Called

Column select
expression

SELECT expression
within predicates
and used as value
expression.

Select expression
without select list.
Within a predicate,
result table must
be no more than one
column wide (except for
EXISTS and SINGLE
predicates). As a value
expression, result table
must contain a single
value.

Subquery
(ANSI/ISO
SQL)

Singleton select SELECT statement
within host language
programs to assign
single row of values to
host language variables.
See SELECT Statement:
Singleton Select.

Select expression with
INTO clause after
SELECT list. Result
table must be no more
than one row long.

Select
statement
(ANSI/ISO
SQL)

2.8.1 Select Expressions

Using select expressions, you can define four types of result tables:

• Simple tables

• Aggregate tables

• Joined tables

• Derived tables

A simple table result is generated from a single table or view and usually
includes the special DBKEY column. The rows of such tables can be updated,
if privileges allow.

An aggregate table is a virtual table formed by the GROUP BY clause
(allowing multi-row results) or an aggregate (or statistical) expression without
allowing a GROUP BY (a single row result).

A table reference is a base table, view, derived table, or a joined table.

2–236 Language and Syntax Elements

A derived table is a named virtual table that represents data obtained
through the evaluation of a select expression. A derived table is named by
the specified correlation name. References to a derived table and its columns
can be made within the query using the correlation name. A derived table is
similar to a view in that a view is also a virtual table represented by the select
expression used to define it. Therefore, a derived table is like a view whose
definition is specified within the FROM clause.

A joined table is a virtual table that represents data obtained through
the joining of two table references. The type of join between the two table
references can be either CROSS, INNER JOIN, LEFT OUTER JOIN, RIGHT
OUTER JOIN, or FULL OUTER JOIN. You need to use the joined table syntax
to specify an outer join operation.

There are two types of joined tables:

• Qualified join

• Cross join

See the following syntax and arguments for more information on joined and
derived tables.

See Appendix G for information on Oracle style join tables.

Environment
You can use select expressions, by themselves or as part of other SQL
statements, in interactive SQL or in host language programs.

SQL evaluates the arguments in a select clause in the following order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. Select list

6. ORDER BY

7. OFFSET

8. LIMIT TO (or FETCH FIRST)

After each of these clauses, SQL produces an intermediate result table that
is used in evaluating the next clause. The optimizer finds the fastest way of
doing this without changing the result.

Language and Syntax Elements 2–237

Format

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

select-clause =

SELECT select-list
ALL
DISTINCT

FROM table-ref
,

WHERE predicate GROUP BY <column-name>
value-expr

,

HAVING predicate

2–238 Language and Syntax Elements

select-list =

*
value-expr

AS <name>
edit-using-clause

<table-name> . *
<view-name>
<correlation-name>

,

edit-using-clause =

EDIT USING edit-string
<domain-name>

table-ref =

<table-name>
<view-name> correlation-name-clause
derived-table
joined-table

derived-table =

(select-expr)
joined-table

joined-table =

qualified-join
cross-join

(joined-table)

Language and Syntax Elements 2–239

qualified-join =

table-ref JOIN table-ref
join-type

ON predicate
USING (<column-name>)

,
table-ref NATURAL JOIN table-ref

join-type

cross-join =

table-ref CROSS JOIN table-ref

join-type =

INNER
LEFT OUTER
RIGHT
FULL

correlation-name-clause =

AS <correlation-name>
(<name-of-column>)

,

order-by-clause =

ORDER BY value-expr
<integer> ASC

DESC
,

offset-clause =

OFFSET skip-expression ROW
ROWS

2–240 Language and Syntax Elements

limit-to-clause =

LIMIT TO limit-expression
OFFSET skip-expression ROW
SKIP skip-expression ROWS

skip-expression , limit-expression

FETCH FIRST ONLY
NEXT limit-expression ROW

ROWS

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

Arguments
AS name
You can, optionally, give a column a name that might not otherwise be named
using the AS clause. For example:

SQL> SELECT JOB_CODE AS JOB,
cont> MAXIMUM_SALARY - MINIMUM_SALARY AS RANGE
cont> FROM JOBS
cont> WHERE JOB_CODE LIKE ’S%’;
JOB RANGE
SANL 20000.00
SCTR 15000.00
SPGM 25000.00
3 rows selected

You can use asterisks (*) as wildcards in a select list.

To use delimited identifiers, you must specify the SQL99 or similar dialect, or
use the SET QUOTING RULES statement for these dialects.

Language and Syntax Elements 2–241

ASC
DESC
Determines whether the values for sort keys are sorted in ascending or
descending order.

If you do not specify the sort order for the sort key, the default order is
ascending.

If your dialect is set to ’SQLV40’ (the default dialect) then the sort order is
inherited from the preceding sort key.

correlation-name-clause
You can specify a correlation name following a table or a view, and you must
specify a correlation name for a derived table in the FROM clause to qualify
column names in other parts of the select expression. If you do not explicitly
specify a correlation name, SQL implicitly specifies the table name or view
name as a correlation name. The same correlation name may not be specified
more than once, either explicitly or implicitly.

The correlation name may also rename columns when specified with a
derived table. Therefore, the number of columns in the table to the left of
the correlation name must match the number of columns specified to the right
of the correlation name.

CORRESPONDING
The UNION, EXCEPT, MINUS, and INTERSECT operators can be followed
by the keyword CORRESPONDING. This causes the two select lists of the
select-merge-clause to be compared by name. Only those column names which
appear in both lists are retained for the resulting query table.

The name is either the column name, or the name provided by the AS clause.
If there are no names in common, or a column name appears more than once
in a select list then an error is reported.

CROSS JOIN
Combines all rows of the left-specified table reference to all rows of the right-
specified table reference in the result. A cross join is a Cartesian product
between two table references. A cross join is similar to the basic join expression
but without the WHERE clause. This is also called a Cartesian product.
Following is an example of the basic join expression using the comma-separated
syntax:

SQL> SELECT *
cont> FROM TABLE1, TABLE2;

2–242 Language and Syntax Elements

Using the CROSS JOIN clause, the previous example would appear as follows:

SQL> SELECT *
cont> FROM TABLE1 CROSS JOIN TABLE2;

EDIT USING edit-string
EDIT USING domain-name
Associates an edit string with a value expression. When a domain-name is
specified, the edit string defined for that domain is used. This clause overrides
any EDIT STRING defined for the columns or variables in the query. This
clause is valid in interactive SQL only.

The following example illustrates the use of this clause.

SQL> set quoting rules ’SQL99’;
SQL>
SQL> create domain MONEY integer(2) edit string ’$$$,$$$,$$9’;
SQL>
SQL> select
cont> last_name as "Last Name",
cont> employee_id,
cont> birthday as "Birthday" edit using ’YYYYBDDBMMM’,
cont> (select salary_amount
cont> from salary_history sh
cont> where sh.employee_id = e.employee_id
cont> and salary_end is null) as "Salary" edit using MONEY
cont> from employees e
cont> where e.employee_id < ’00167’;
Last Name EMPLOYEE_ID Birthday Salary
Toliver 00164 1947 28 Mar $51,712
Smith 00165 1954 15 May $11,676
MacMullan 00166 1954 20 Mar $18,497
3 rows selected

EXCEPT
EXCEPT DISTINCT
The EXCEPT DISTINCT operator is used to create a result table from the
first select expression except for those row values that also occur in the second
select expression.

DISTINCT is the default so EXCEPT and EXCEPT DISTINCT are identical
operations. EXCEPT conforms to the ANSI and ISO SQL:1999 Database
Language Standard.

Note

EXCEPT is not commutative. That is, A EXCEPT B may result in a
different set of rows from B EXCEPT A.

Language and Syntax Elements 2–243

FETCH FIRST limit-expression
FETCH NEXT limit-expression
The FETCH FIRST clause allows the database programmer to limit the results
returned from a query expression. The FETCH FIRST clause is equivalent to
functionality currently supported by the LIMIT TO clause. FETCH accepts a
numeric value expression which may contain arbitrary arithmetic operators,
function calls, subselect clauses or sequence references. The subselect clauses
may not reference columns in the outer query as it is evaluated before row
processing begins.

The FETCH NEXT is identical to FETCH FIRST but allows the syntax to be
more descriptive when coupled with the OFFSET clause.

If no value expression is provided for FETCH it will default to 1 row.

The FETCH clause is not compatible with the LIMIT TO clause.

The following example uses the FETCH FIRST to find the oldest manager
in the company. The example uses the DEPARTMENTS table to locate the
employee id of each manager, and after sorting them by their birthday, the
oldest manager’s name and employee id are displayed.

SQL> -- select the most senior manager
SQL> select e.last_name, e.first_name, e.employee_id
cont> from departments d, employees e
cont> where d.manager_id = e.employee_id
cont> order by e.birthday
cont> fetch first row only;
E.LAST_NAME E.FIRST_NAME E.EMPLOYEE_ID
O’Sullivan Rick 00190
1 row selected
SQL>

FROM derived-table
A derived table is a named virtual table containing data obtained through the
evaluation of the select expression in the FROM clause. The derived table is
named by specifying the correlation name.

You must specify a correlation name for a derived table. This may determine
which column names the user can specify in the select list or subsequent
clauses. The select list and subsequent clauses can reference only the
correlation name and the column names of the derived table and cannot
reference the table or column names that defined the derived table.

2–244 Language and Syntax Elements

Following is an example of a derived table using the personnel database.
This example finds all departments that have less than 3 rows in the JOB_
HISTORY table.

SQL> SELECT *
cont> FROM (SELECT DEPARTMENT_CODE, COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE JOB_END IS NULL
cont> GROUP BY DEPARTMENT_CODE)
cont> AS DEPT_INFO (D_CODE, D_COUNT)
cont> WHERE D_COUNT < 3;
D_CODE D_COUNT
ENG 2
MCBS 1
MSMG 1
MTEL 2
PERS 2
SUSA 2
6 rows selected

FROM joined-table
A joined table represents a join between two table references specified in the
FROM clause.

There are two types of joined tables:

• Qualified join—syntax contains either an implicit or explicit predicate

• Cross join—syntax does not contain a predicate

A table can be joined to itself or joined to other tables. When an outer join
is specified in the joined-table expression, you can use the parentheses to
explicitly define the join order. If only inner or cross joins are specified in the
joined-table expression, the use of parentheses does not affect the join order.
SQL tries all possible join orders to find the most efficient order for the query.
If outer joins are specified in the joined-table expression, the join order is
determined first by any existing parentheses and then by the left-to-right rule.

The table or correlation names specified in the joined-table expression can be
referenced by the outer select expression.

FROM table-name
FROM view-name
Identifies the tables and views that SQL uses to generate the result table.
If you name more than one table or view, SQL joins them to create an
intermediate result table.

Language and Syntax Elements 2–245

FULL OUTER JOIN
Preserves all rows from the left-specified table reference and all rows from the
right-specified table reference in the result. NULL appears in any column that
does not have a matching value in the corresponding column. For example:

SQL> SELECT *
cont> FROM TABLE1 FULL OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 10 AA

NULL NULL 15 BB
20 25 20 CC
30 35 NULL NULL

4 rows selected

You must specify at least one equijoin condition in the ON clause of a FULL
OUTER JOIN clause. This restriction does not apply to a FULL OUTER JOIN
clause with the USING clause or to the NATURAL FULL OUTER JOIN clause.

An equijoin matches values in columns from one table with the corresponding
values of columns in another table implicitly using an equal (=) sign.

GROUP BY value-expr
Indicates the value expressions that SQL uses for organizing the intermediate
result table from the WHERE clause, if specified, or the FROM clause. These
groups of rows containing the same value are also called control breaks.

For the first expression specified in the GROUP BY clause, SQL orders the
rows of the preceding intermediate result table into groups whose rows all
have the same value for the specified expression. If a second expression is
specified in the GROUP BY clause, SQL then groups rows within each main
group by values of the second expression. SQL groups any additional columns
in the GROUP BY clause in a similar manner.

All null values for a column name in the GROUP BY clause are grouped
together.

Each group is treated as the source for the values of a single row of the result
table.

Because all rows of a group have the same value for the value expression
specified in the GROUP BY clause, references within value expressions or
predicates to that column specify a single value.

HAVING predicate
Specifies a predicate that SQL evaluates to generate an intermediate result
table. SQL evaluates the predicate for each group of the intermediate result
table created by a preceding clause. The groups of that table for which the

2–246 Language and Syntax Elements

predicate is true become another intermediate result table to which SQL
applies the select list for evaluation.

If the clause preceding the HAVING clause is a GROUP BY clause, then the
predicate is evaluated for each group in the intermediate result table. The
HAVING clause affects groups just as the WHERE clause affects individual
rows.

If the HAVING clause is not preceded by a GROUP BY clause, SQL evaluates
the predicate for all the rows in the intermediate result table as a single group.

SQL restricts which expressions you can specify in the predicate of a HAVING
clause. A column name or expression in a HAVING predicate must meet one of
the following criteria:

• It must also appear in the GROUP BY clause.

• It must be specified within an aggregate function.

• It must be an outer reference (possible only if the HAVING clause is part of
a column select expression).

For instance, the following statement is invalid. It has a HAVING clause
without a GROUP BY clause, which means that any column names in the
HAVING clause must be part of a function (because there is no outer query, the
column names cannot be outer references).

SQL> SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEES
cont> HAVING FIRST_NAME = ’Bob’;
%SQL-F-NOTGROFLD, Column FIRST_NAME cannot be referred to in
the select list or HAVING clause because it is not in the GROUP BY clause

INNER JOIN
Combines all rows of the left-specified table reference to matching rows in the
right-specified table reference. For example:

SQL> SELECT *
cont> FROM TABLE1 INNER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1
cont> AND C2 BETWEEN 25 AND 35;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 10 AA
20 25 20 CC

2 rows selected

Language and Syntax Elements 2–247

Both TABLE1 and TABLE2 are exposed in the remainder of the select clause
and, therefore, can be used to qualify columns from either table reference.

SQL> SELECT *
cont> FROM TABLE1 INNER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1
cont> WHERE TABLE1.C1 = 10;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 10 AA

1 row selected

If INNER JOIN is specified in the joined-table expression, it implies any join
ordering of the table references. For example, A INNER JOIN B INNER
JOIN C is equivalent to A INNER JOIN C INNER JOIN B. In general, any
permutation of table references A, B, and C in an inner join table expression
produces the same result. Further, SELECT * FROM A INNER JOIN B ON
P1 INNER JOIN C ON P2 is equivalent to the syntax SELECT * FROM A, B,
C WHERE P1 AND P2.

INTERSECT
INTERSECT DISTINCT
The INTERSECT DISTINCT operator is used to create a result table from the
first select expression for those row values that also occur in the second select
expression.

DISTINCT is the default so INTERSECT and INTERSECT DISTINCT are
identical operations. INTERSECT conforms to the ANSI and ISO SQL:1999
Database Language Standard.

Note

In general INTERSECT is commutative. That is, A INTERSECT
B results in the same set of rows from B INTERSECT A. This is
demonstrated by the examples below. However, care should be
taken when using LIMIT TO within the different branches of the
INTERSECT as this will make the result non deterministic because of
possible different solution strategies employed by the Rdb optimizer.

LEFT OUTER JOIN
Preserves all rows in the left-specified table reference and matches to rows
in the right-specified table reference in the result. NULL appears in columns
where there is no match in the right-specified table. For example:

2–248 Language and Syntax Elements

SQL> SELECT *
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 10 AA
20 25 20 CC
30 35 NULL NULL

3 rows selected

Basically, outer joins are an inner join with a union adding NULL to all
unmatched rows. Notice that the LEFT OUTER JOIN example results are the
same as the INNER JOIN example results plus the unmatched row.

The search condition specified in the ON clause is used to construct the
outer join result. In addition to the join predicates, you can specify selection
predicates and subqueries in the ON clause. For example:

SQL> SELECT *
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1
cont> AND C2 BETWEEN 25 AND 35;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 NULL NULL
20 25 20 CC
30 35 NULL NULL

3 rows selected

A select condition in the ON clause reduces the inner join result. The left outer
join result contains the inner join result plus each row from TABLE1 that did
not match a row in TABLE2 and was extended with NULL.

In contrast, the result from the following example uses the same selection
condition but with the WHERE clause:

SQL> SELECT *
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1
cont> WHERE C2 BETWEEN 25 AND 35;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
20 25 20 CC
30 35 NULL NULL

2 rows selected

In the previous example, the left outer join result is first constructed using the
search condition in the ON clause. Then the selection condition in the WHERE
clause is applied to each row in the outer join result to form the final result.

Language and Syntax Elements 2–249

LIMIT TO limit-expression
LIMIT TO skip-expression
The LIMIT TO clause allows you to limit the number of rows in the result
table, or to skip rows returned from a query. For example, the first row in the
result set might be the column headings loaded from a CSV data source loaded
by the RMU/LOAD/RECORD=FORMAT=DELIMITED command that should
be ignored by queries.

If either limit-expression or skip-expression is specified as a numeric literal,
then it must be an unscaled value. These numeric expressions are converted to
BIGINT before executing the query.

Neither limit-expression nor skip-expression can reference columns from the
select-expression in which they occur. You can use only columns of a subselect
specified for the limit-expression or skip-expression. The example in this
section uses a subselect in the LIMIT TO clause.

Note

Oracle recommends that the values specified for skip-expression be kept
small for performance reasons. The skipped rows are still fetched and
processed by the query; they are just not returned to the application.

If limit-expression is evaluated to a negative value or zero, then no rows are
returned from the query, and no error is reported.

If skip-expression is evaluated to a negative value or zero, then no rows are
skipped. If the skip-expression is larger than the rows in the result set, then
no rows are returned from the query, and no error is reported. The following
examples show the use of the LIMIT TO ... SKIP syntax.

This query returns the 100th employee from the EMPLOYEES table:

SQL> select last_name, first_name, employee_id
cont> from employees
cont> order by employee_id
cont> limit to 1 skip 99 rows;
LAST_NAME FIRST_NAME EMPLOYEE_ID
Herbener James 00471
1 row selected

To retrieve the last row in the sorted list, you can replace the literal value with
a subselect that calculates the value as shown in the following example. This
query also shows the output from the SET FLAGS command for the query
strategy.

2–250 Language and Syntax Elements

SQL> set flags ’strategy,detail’;
SQL> select last_name, first_name, employee_id
cont> from employees
cont> order by employee_id
cont> limit to 1
cont> skip (select count(*)-1 from employees) rows;
Tables:
0 = EMPLOYEES
1 = EMPLOYEES

Cross block of 2 entries
Cross block entry 1
Aggregate: 0:COUNT (*)
Index only retrieval of relation 1:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Cross block entry 2
Firstn: 1
Skipn: <agg0> - 1
Get Retrieval by index of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

LAST_NAME FIRST_NAME EMPLOYEE_ID
Herbener James 00471
1 row selected
SQL>

An alternative to this query would be to use ORDER ... DESC and then to use
a LIMIT 1 ROW clause.

This query finds the statistical median salary:

SQL> -- select the median salary
SQL> select salary_amount
cont> from salary_history
cont> where salary_end is NULL
cont> order by salary_amount
cont> limit to 1
cont> skip (select count(*)/2
cont> from salary_history
cont> where salary_end is NULL);
SALARY_AMOUNT

$24,166.00
1 row selected
SQL>

This result can be compared with the average salary:

Language and Syntax Elements 2–251

SQL> -- select the median salary compare with average
SQL> select salary_amount as median_salary,
cont> (select avg (salary_amount)
cont> from salary_history
cont> where salary_end is NULL) as avg_salary edit using SALARY
cont> from salary_history
cont> where salary_end is NULL
cont> order by salary_amount
cont> limit to 1
cont> skip (select count(*)/2
cont> from salary_history
cont> where salary_end is NULL);
MEDIAN_SALARY AVG_SALARY

$24,166.00 $31,922.79
1 row selected
SQL>

MINUS
The MINUS operator is a synonym for the EXCEPT DISTINCT operator and is
provided for language compatibility with the Oracle Database SQL language.

NATURAL JOIN
Performs an equijoin operation on the matching named columns of the specified
tables. An equijoin matches values in columns from one table with the
corresponding values of columns in another table implicitly using an equal
(=) sign.

A NATURAL JOIN implicitly performs the following functions:

• Coalesces the common columns to condense the columns into a single
column and, therefore, you cannot qualify the common column

• Performs an equijoin using common columns between table references

You cannot specify an explicit join condition if the NATURAL keyword is
specified in the query. Following is an example of a natural join. Note the
common column C1 is only shown once. Other types of join conditions return
the common column as often as it occurs in the table’s references.

SQL> SELECT *
cont> FROM TABLE1 NATURAL LEFT OUTER JOIN TABLE2;

C1 TABLE1.C2 TABLE2.C4
10 15 AA
20 25 CC
30 35 NULL

3 rows selected

2–252 Language and Syntax Elements

The complexity of what the NATURAL LEFT OUTER JOIN is implicitly
executing in the previous example is shown in the following example:

SQL> SELECT
cont> COALESCE (TABLE1.C1, TABLE2.C1) AS C1,
cont> TABLE1.C2, TABLE2.C4
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1;

C1 TABLE1.C2 TABLE2.C4
10 15 AA
20 25 CC
30 35 NULL

3 rows selected

The NATURAL keyword can be specified for INNER, LEFT OUTER, RIGHT
OUTER, and FULL OUTER joins.

A natural join between two table references that do not share matching named
columns results in a Cartesian product.

OFFSET skip-expression
The OFFSET clause allows the database programmer to start fetching the
result rows from the specified offset within the result table. OFFSET accepts
a numeric value expression which may contain arbitrary arithmetic operators,
function calls, subselect clauses or sequence references. The subselect clauses
may not reference columns in the outer query as it is evaluated before row
processing begins.

The OFFSET clause is equivalent in functionality to the SKIP clause currently
supported by the LIMIT TO clause. The distinction is that OFFSET can be
specified without a row limit.

This following query uses a subselect in the OFFSET clause to locate the
median (or middle) row of the sorted set.

SQL> select e.last_name, e.first_name, employee_id, sh.salary_amount
cont> from salary_history sh inner join employees e using (employee_id)
cont> where sh.salary_end is null
cont> order by sh.salary_amount
cont> offset (select count(*)
cont> from salary_history
cont> where salary_end is null)/2 rows
cont> fetch next row only;
E.LAST_NAME E.FIRST_NAME EMPLOYEE_ID SH.SALARY_AMOUNT
Boyd Ann 00244 $24,166.00
1 row selected
SQL>

Language and Syntax Elements 2–253

ON predicate
Specifies a search condition on which the join is based. The predicate can have
columns from the two operands mentioned, or have outer references if it is in a
subquery.

OPTIMIZE AS query-name
Assigns a name to the query. You can define the RDMS$DEBUG_FLAGS
logical name or use SET FLAGS with the option STRATEGY to see the access
methods used to produce the results of the query. The following example shows
how to use the OPTIMIZE AS clause:

SQL> DELETE FROM EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000)
cont> OPTIMIZE AS DEL_EMPLOYEE;
Leaf#01 FFirst RDB$RELATIONS Card=19

.

.

.
~Query Name : DEL_EMPLOYEE

.

.

.
7 rows deleted

OPTIMIZE FOR
Specifies the preferred optimizer strategy for statements that specify a select
expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If the optimization level is not explicitly set, FAST FIRST is the default.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

2–254 Language and Syntax Elements

The following examples illustrate the DECLARE CURSOR syntax for
setting a preferred optimization mode:

SQL> DECLARE TEMP1 TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00400’
cont> OPTIMIZE FOR FAST FIRST;
SQL> --
SQL> DECLARE TEMP2 TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> ORDER BY LAST_NAME
cont> OPTIMIZE FOR TOTAL TIME;

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

When the storage map of a table has the attribute PARTITIONING IS NOT
UPDATABLE, the mapping of data to a storage area is strictly enforced.
This is known as strict partitioning. When queries on such tables use
sequential access, the optimizer can eliminate partitions which do not
match the WHERE restriction rather than scan every partition.

The following example shows a query that deletes selected rows from a
specific partition. This table also includes several indexes, which may be
chosen by the optimizer. Therefore, the OPTIMIZE clause forces sequential
access.

SQL> delete from PARTS_LOG
cont> where parts_id between 10000 and 20000
cont> and expire_date < :purge_date
cont> optimize for sequential access;

Note that all access performed by such queries will be sequential. Care
should be taken that the I/O being used is acceptable by comparing similar
queries using index access.

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the select expression even if
the outline ID for the select expression and for the outline are different.

Language and Syntax Elements 2–255

The following example is the query used to create an outline named WOMENS_
DEGREES:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME

By using the OPTIMIZE USING clause and specifying the WOMENS_
DEGREES outline, you can ensure that Oracle Rdb attempts to use the
WOMENS_DEGREES outline to execute a query even if the query is slightly
different as shown in the following example:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> LIMIT TO 10 ROWS
cont> OPTIMIZE USING WOMENS_DEGREES;
~S: Outline WOMENS_DEGREES used <-- the query uses the WOMENS_DEGREES outline

.

.

.
E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982
Boyd 00244 PhD Applied Math 1979
Brown 00287 BA Arts 1982
Brown 00287 MA Applied Math 1979
Clarke 00188 BA Arts 1983
Clarke 00188 MA Applied Math 1976
Clarke 00196 BA Arts 1978
Clinton 00235 MA Applied Math 1975
Clinton 00201 BA Arts 1973
Clinton 00201 MA Applied Math 1978
10 rows selected

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows
will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

ORDER BY integer
ORDER BY value-expr
Specifies the order of rows for the result table. SQL sorts the rows from the
intermediate result table by the values of expressions specified in the ORDER

2–256 Language and Syntax Elements

BY clause. The intermediate result table is the result table SQL produces
when it evaluates the preceding clause in the select expression (HAVING,
GROUP BY, WHERE, or FROM).

You can refer to columns in the ORDER BY clause in two ways:

• By a value expression

• By column number, where the integer you specify indicates the left-to-right
position of the column in the result table

You must use an integer to identify a column in the ORDER BY clause if that
column in the select list is derived from a function, an arithmetic expression,
or the result of a UNION, MINUS, EXCEPT, or INTERSECT operator.

Whether you identify expressions in an ORDER BY clause using a name or
using a number, the expressions are called sort keys.

When you use multiple sort keys, SQL treats the first expression as the major
sort key and successive keys as minor sort keys. That is, it first sorts the rows
into groups based on the first value expression. Then, it uses the second value
expression to sort the rows within each group, and so on. Unless you specify a
sort key for every column in the result table, rows with identical values for the
last sort key specified will be in arbitrary order.

The following example illustrates using the ORDER BY clause with a value
expression.

SQL> SELECT * FROM EMPLOYEES
cont> ORDER BY EXTRACT (YEAR FROM BIRTHDAY),
cont> TRIM(FIRST_NAME) || TRIM(LAST_NAME);
00190 O’Sullivan Rick G.
78 Mason Rd. NULL Fremont

NH 03044 M 12-Jan-1923 1 None
00231 Clairmont Rick NULL
92 Madiso7 Drive NULL Chocorua

NH 03817 M 23-Dec-1924 2 None
00183 Nash Walter V.
197 Lantern Lane NULL Fremont

NH 03044 M 19-Jan-1925 1 None
00177 Kinmonth Louis NULL
76 Maple St. NULL Etna

NH 03750 M 7-Apr-1926 1 None
00240 Johnson Bill R.
20 South St NULL Milford

NH 03055 M 13-Apr-1927 2 None
.
.
.

Language and Syntax Elements 2–257

qualified-join
Qualifies and alters the result returned from the joined tables. There are
several types of qualified joins:

• INNER JOIN

• LEFT OUTER JOIN

• RIGHT OUTER JOIN

• FULL OUTER JOIN

• NATURAL JOIN

For an INNER and OUTER JOIN, the result table is the combination of all
columns of the first table reference to all the columns in the second table
reference. For a NATURAL JOIN, the result table condenses common columns
(that is, columns with the same name) between the table references. See the
following arguments for more information.

RIGHT OUTER JOIN
Preserves all rows of the right-specified table reference and matches to rows
in the left-specified table reference in the result. NULL appears in columns
where there is no match in the left-specified table reference. For example:

SQL> SELECT *
cont> FROM TABLE1 RIGHT OUTER JOIN TABLE2
cont> ON TABLE1.C1 = TABLE2.C1;

TABLE1.C1 TABLE1.C2 TABLE2.C1 TABLE2.C4
10 15 10 AA

NULL NULL 15 BB
20 25 20 CC

3 rows selected

Notice that the FULL OUTER JOIN example result is the same as the INNER
JOIN example result plus the unmatched rows from TABLE1 and unmatched
rows from TABLE2.

SELECT *
Tells SQL to use all the column results from the intermediate result table
(namely, all the columns in all the table references referred to in the FROM
clause). If the select expression contains a GROUP BY clause, SQL interprets
the wildcard (*) as specifying only the expressions in the GROUP BY clause.

SELECT ALL
Specifies that duplicate rows should not be eliminated from the result table.
ALL is the default.

2–258 Language and Syntax Elements

SELECT DISTINCT
Specifies that SQL should eliminate duplicate rows from the result table.

SELECT name.*
Tells SQL to use all the columns in the table references referred to by the table
name, view name, or correlation name. The name must be specified in the
FROM clause of the select expression. You cannot mix this form of wildcard
notation with SELECT *.

The number of columns you specify in the select list, either by using wildcards
or by explicitly listing value expressions, is the number of columns in the result
table. In

select-list
Identifies a list of value expressions (to be derived from the table references
named in the FROM clause) for the final result table.

UNION
UNION DISTINCT
Merges the results of a select expression with another select expression into
one result table by appending the values of columns in one table with the
values of columns in other tables.

The following example extracts the EMPLOYEE_ID of current employees with
a salary greater than $50,000 and with a Ph.D. Duplicate rows are eliminated
from the result table:

SQL> SELECT EMPLOYEE_ID
cont> FROM CURRENT_SALARY
cont> WHERE SALARY_AMOUNT > 50000
cont> UNION
cont> SELECT EMPLOYEE_ID
cont> FROM DEGREES
cont> WHERE DEGREE = ’PhD’;
EMPLOYEE_ID
00164
00166
00168
00169
00172
00182

.

.

.
00418
00435
00471
38 rows selected

Language and Syntax Elements 2–259

UNION ALL
Specifies that duplicate rows should not be eliminated from the result table.
By default, the UNION operator removes duplicate rows.

The following example returns duplicate rows from the result table:

SQL> SELECT LAST_NAME, SEX FROM EMPLOYEES WHERE LAST_NAME = ’Nash’
cont> UNION ALL
cont> SELECT LAST_NAME, SEX FROM EMPLOYEES WHERE LAST_NAME = ’Lapointe’;
LAST_NAME SEX
Nash M
Nash M
Lapointe F
Lapointe F
4 rows selected

USING
Specifies the columns on which the join is based. Column names must be
defined in both table references specified in the qualified join. The USING
clause implies an equijoin condition between columns of the same name and
creates a common column in the result.

SQL> SELECT *
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> USING (C1);

C1 TABLE1.C2 TABLE2.C4
10 15 AA
20 25 CC
30 35 NULL

3 rows selected

The common columns are coalesced into a single column in the result in the
previous example. Therefore, such columns cannot be qualified. You can
reference the coalesced column in a query. For example:

SQL> SELECT *
cont> FROM TABLE1 LEFT OUTER JOIN TABLE2
cont> USING (C1)
cont> WHERE C1 BETWEEN 20 AND 30;

C1 TABLE1.C2 TABLE2.C4
20 25 CC
30 35 NULL

2 rows selected

WHERE predicate
Specifies a predicate that SQL evaluates to generate an intermediate result
table. SQL evaluates the predicate for each row of the intermediate result
table created by the FROM clause. The rows of that table for which the

2–260 Language and Syntax Elements

predicate is true become another intermediate result table for later clauses in
a select expression.

Column names specified in the predicate of the WHERE clause must either:

• Identify columns of the intermediate result table created by the FROM
clause.

• Be an outer reference (possible only if the WHERE clause is part of a
column select expression). See Section 2.2.4.2 for more information on
outer references.

In general, the predicate in a WHERE clause cannot refer to an aggregate
function. For instance, the following statement is invalid:

SQL> SELECT * FROM EMPLOYEES WHERE MAX(LAST_NAME) > ’X’;
%SQL-F-INVFUNREF, Invalid function reference

See the Usage Notes in this section for a limited exception to this restriction.

Usage Notes

• You cannot specify a correlation name in a table reference that is the
same as any other correlation name already specified in the containing
FROM clause or that is the same as the table identifier of any table name
exposed in the containing FROM clause. This restriction complies with the
ANSI/ISO SQL standard.

This restriction causes the error message that appears in the following
example:

SQL> SELECT * FROM JOBS, CURRENT_JOB JOBS;
%SQL-F-CONVARDEF, Column qualifier JOBS is already defined
SQL> --
SQL> SELECT * FROM JOBS J, CURRENT_JOB J;
%SQL-F-CONVARDEF, Column qualifier J is already defined

• The ordering of INNER, LEFT OUTER, RIGHT OUTER, and FULL
OUTER joins is determined by the ON predicate. If you put your syntax
inside parentheses, remember to also place the corresponding ON predicate
inside those parentheses.

• For select expressions embedded in programs and modules (both stored and
nonstored), SQL expands wildcards in select lists when it precompiles the
program, not when the program runs.

• When specifying a column name in a select expression, if the column name
is the same as a parameter, you must use a correlation name with the
column name to distinguish it from the parameter.

Language and Syntax Elements 2–261

• In general, the predicate in a WHERE clause cannot refer to an aggregate
function. The only exception to this restriction is when the function in a
WHERE clause has an outer reference as its argument. The only cases
where this is possible are when the WHERE clause is a predicate for a
column select expression that is:

A value expression in a select list item

Part of a predicate to a HAVING clause

SQL> -- Display departments that have total current
SQL> -- salaries greater than their projected budget:
SQL> SELECT DEPARTMENT
cont> FROM CURRENT_INFO
cont> GROUP BY DEPARTMENT
cont> HAVING DEPARTMENT IN
cont> (SELECT DEPARTMENT_NAME
cont> FROM DEPARTMENTS
cont> WHERE SUM (CURRENT_INFO.SALARY) > BUDGET_PROJECTED);
0 rows selected

• If you do not use the GROUP BY clause, the select list must either:

Be a list of aggregate functions only

Not contain any functions

For example, SQL cannot evaluate the following query because it mixes a
function and a column name:

SQL> SELECT EMPLOYEE_ID, AVG(SALARY_AMOUNT)
cont> FROM SALARY_HISTORY;
%SQL-F-INVSELLIS, Select list cannot mix columns and
functions without GROUP BY

When you do specify a list of functions (without a GROUP BY clause), the
result table generated by a select expression has only one row.

• If you use the GROUP BY or HAVING clauses, column names in the select
list must either be:

In the GROUP BY clause also

Specified within an aggregate function

For example, the following statement is invalid:

SQL> SELECT LAST_NAME, FIRST_NAME FROM EMPLOYEES
cont> GROUP BY LAST_NAME ;

However, you can use a wildcard in the select list because SQL interprets
the wildcard as referring only to the column names specified in the GROUP
BY clause.

2–262 Language and Syntax Elements

For instance, the following statement is valid (in this case, the wildcard
specifies only the LAST_NAME column):

SQL> SELECT * FROM EMPLOYEES
cont> GROUP BY LAST_NAME ;

• The characteristics of the columns in the result table of a select expression
depend on how the columns were specified in the select list.

Columns in the result table derived directly from column names in the
select list inherit the name, data type, and other characteristics of the
source column as specified in the CREATE TABLE statement.

Columns derived through other value expressions in the select list can
be named using the AS clause. They have data types that are the same
as the result of the value expression.

Columns derived from literals in the select list do not allow null values.
Columns derived from the COUNT function also do not allow null
values. Columns derived from parameters allow null values if the
parameter has an indicator parameter.

• The following restrictions apply when you use a value expression in a
GROUP BY clause:

You must have a syntactically similar value expression in the select
list.

The asterisk (*) is not supported in value expressions with GROUP
BY.

• The EXCEPT DISTINCT operator can be rewritten to use the NOT ANY
predicate. In fact the Rdb server implements EXCEPT DISTINCT in this
way. Consider this example:

SQL> select manager_id from departments
cont> except distinct
cont> select employee_id from employees;

This query could be rewritten as:

SQL> select manager_id
cont> from departments d
cont> where not exists (select *
cont> from employees e
cont> where e.employee_id = d.manager_id
cont> or (e.employee_id is null
cont> and d.manager_id is null));

Language and Syntax Elements 2–263

As you can see even for this simple query the EXCEPT format is easier to
read. As the number of columns selected increases so does the complexity
of the NOT EXISTS subquery.

• The INTERSECT DISTINCT operator can be rewritten to use the EXISTS
predicate. In fact the Rdb server implements INTERSECT DISTINCT in
this way. Consider this example which displays all managers which are
also employees:

SQL> select manager_id from departments
cont> intersect distinct
cont> select employee_id from employees;

This query could be rewritten as:

SQL> select manager_id
cont> from departments d
cont> where exists (select *
cont> from employees e
cont> where e.employee_id = d.manager_id
cont> or (e.employee_id is null
cont> and d.manager_id is null));

As you can see even for this simple query the INTERSECT format is
easier to read. As the number of columns selected increases so does the
complexity of the EXISTS subquery.

• For both EXCEPT and INTERSECT all duplicate rows are eliminated.
For the purposes of these operators a row is considered a duplicate if each
value in the first select list is equal to the matching column in the second
select list, or if both these columns are NULL.

The duplicate matching semantics can be clearly seen in the rewritten
queries which use NOT EXISTS and EXISTS.

• If ORDER BY is used in a query that includes OFFSET, FETCH FIRST
(FETCH NEXT), or LIMIT TO clauses then the rows are first retrieved and
sorted prior to applying the OFFSET, FETCH or LIMIT TO actions.

• A select expression may contain both OFFSET and FETCH NEXT (LIMIT
TO) clauses, in which case the OFFSET is applied first and then the
FETCH NEXT clause. For instance, if the query would normally return
100 rows then an OFFSET 20 would skip over the first 20 rows and return
the remaining 80. If on the other hand an OFFSET 20 and a LIMIT TO
20 were specified then after skipping the first 20 rows the next 20 are
returned.

• The OFFSET, FETCH FIRST or LIMIT TO clause may result in no rows
being retrieved.

2–264 Language and Syntax Elements

2.8.2 Column Select Expressions
A column select expression is a select expression that specifies a one-column
result table in one row and can be nested within predicates and (if they specify
a single value) value expressions. Column select expressions cannot specify a
list of select items. You can only specify one value in a select list.

Column select expressions are also called scalar expressions.

SQL accepts column select expressions as arguments to IN and quantified
predicates, and more generally as value expressions.

• As arguments to IN and quantified predicates, column select expressions
specify a collection of values to which SQL compares a value expression.
Therefore, column select expressions as arguments to those predicates can
return one or more values.

• As a type of value expression, column select expressions specify a single
value. Therefore, a column select expression used as a value expression
should not return more than one value. If it does, SQL generates the
following error:

%RDB-E-MULTIPLE_MATCH, record selection criteria should identify
only one record; more than one record found

If a column select expression used as a value expression returns zero rows,
SQL evaluates the value expression as null. The data type of a column
select expression used as a value expression is the same as the data type of
the column select expression’s select item.

Environment
You can use column select expressions in interactive SQL or in host language
programs.

Format

col-select-expr =

select-expr

Language and Syntax Elements 2–265

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

Arguments
select-expr
A column select expression is a select expression specifying only one value in
the select list. See Section 2.8.1 for more information.

2.9 Context Structures
A distributed transaction groups more than one database or more than one
database attachment together into one transaction, even if the databases are
located on different nodes. The Oracle Rdb7 Guide to Distributed Transactions
explains how to use Oracle Rdb with distributed transactions.

The two-phase commit protocol coordinates the activity of participants
in a transaction to ensure that every required operation is completed before
a transaction is made permanent, even if the transaction is a distributed
transaction.

You can use the two-phase commit protocol when the DECdtm transaction
manager software is installed and started on all nodes that are in the
transaction. Use the two-phase commit protocol when your application starts a
distributed transaction.

When you declare a context structure in an application, you must associate
it with most executable SQL statements. This is true whether you use
SQL module language or precompiled SQL, although the method you use to
associate the context structure with SQL statements differs depending upon
which compiler you choose.

However, you cannot associate a context structure with the following categories
of executable statements:

• Statements that you cannot execute when a transaction is already started

• Statements that do not execute within the scope of a transaction and are
independent of any transaction context

2–266 Language and Syntax Elements

• Statements that you cannot use in transactions that were started by
explicit calls to the transaction manager

You must use the USING CONTEXT clause to specify that an embedded SQL
statement is part of a distributed transaction. For more information about
using embedded SQL with distributed transactions, see Section 4.1. You must
use the CONTEXT clause in a module language procedure to make SQL
execute your procedure in the context of a distributed transaction. For more
information about using SQL module language with distributed transactions,
see Section 3.6.

The following restrictions apply when passing context structures:

• You cannot pass a context structure to the following SQL statements
because you cannot execute them when a transaction is already started:

ALTER DATABASE

CREATE DATABASE

DROP PATHNAME

DROP DATABASE

• You cannot pass a context structure to the following SQL statements
because they do not execute within the scope of a transaction, and they are
independent of any transaction context:

CONNECT

DESCRIBE

DISCONNECT

Extended Dynamic DECLARE CURSOR

RELEASE

SET CATALOG

SET CHARACTER LENGTH

SET CONNECT

SET DEFAULT CHARACTER SET

SET DEFAULT DATE FORMAT

SET DIALECT

SET IDENTIFIER CHARACTER SET

SET KEYWORD RULES

Language and Syntax Elements 2–267

SET LITERAL CHARACTER SET

SET NAMES

SET NATIONAL CHARACTER SET

SET OPTIMIZATION LEVEL

SET QUOTING RULES

SET SCHEMA

SET VIEW UPDATE RULES

• You cannot pass a context structure to the following SQL statements
because they have been started by explicit calls to the transaction
manager:

COMMIT

ROLLBACK

(The DISCONNECT statement can be considered in this category as well
as the previous category.)

Remember that you cannot associate a context structure with nonexecutable
SQL statements. Moreover, you cannot pass a context structure to a
multistatement procedure if that procedure contains a SET TRANSACTION,
COMMIT, or ROLLBACK statement.

2.10 Database Options
By default, the SQL module language processor, or the SQL precompiler
determines the type of database it attaches to from the type of database
specified in compiling the program. If no database is used to compile the
program, the program is processed for a database created with the most recent
version of Oracle Rdb.

Specifying the database options in the DECLARE ALIAS statement overrides
the default established in the precompiler or module processor command lines.

Table 2–37 shows the database options for interactive SQL, SQL module
language processor, and SQL precompiler for OpenVMS.

2–268 Language and Syntax Elements

Table 2–37 Database Options

SQL Module and
Precompiler Explanation

RDBVMS Accesses a database created with the most recent version of Oracle Rdb.

RDB030 Accesses Oracle Rdb Version 3.0 databases.

RDB031 Accesses Oracle Rdb Version 3.1 databases.

RDB040 Accesses Oracle Rdb Version 4.0 databases.

RDB041 Accesses Oracle Rdb Version 4.1 databases.

RDB042 Accesses Oracle Rdb Version 4.2 databases.

RDB050 Accesses Oracle Rdb Version 5.0 databases.

RDB051 Accesses Oracle Rdb Version 5.1 databases.

In most cases, it is not necessary to specify a database option. For example,
when you attach to an Oracle Rdb Version 7.0 database, SQL provides the V7.0
features.

However, you need to specify a database option when the database you attach
to during compilation or precompilation has different features than the
database against which the program is to run. You must specify a database
option that provides the ‘‘lowest common denominator’’ of features for all the
databases that the program intends to use at run time.

If no database is used during compilation of the program, the program is
processed for a database created with the most recent version of Oracle Rdb.
Therefore, if the resulting program is intended to run against a database other
than the most recent version of Oracle Rdb, you must specify that version of
the database option during compilation.

You can use any of the qualifiers listed in Table 2–37 to override the default
database option.

2.11 Using Context Files with SQL Module Language and SQL
Precompiler

You can use SQL context files with SQL module language just as you can use
them with precompiled SQL. A context file is an SQL command procedure
containing DECLARE statements that you want to apply when your program
compiles and executes. Context files help improve the portability of compiled
source files.

Language and Syntax Elements 2–269

The format of a context file used with SQL module language is the same as
the one used for precompiled SQL, with one exception. It is not necessary to
end the DECLARE statements with a semicolon (;) when you use a context
file with SQL module language. However, if you include the semicolon, you can
use the context file with both module and precompiled SQL. When you use a
context file, enter it as the second parameter on the command line.

Suppose an application contains a module that must be compiled using
different SQL dialects. Rather than having two copies of the module and the
problem of maintaining them in parallel, you can have one module and two
context files. The module contains all the code, and each context file contains
the dialect declaration statement. For example, assume that you need to
compile the module TEST using two different dialects: SQL92 and MIA. You
might create two context files:

• The context file TEST-SQL92 contains the following DECLARE MODULE
statements:

DECLARE MODULE
DIALECT SQL92

• The context file TEST-MIA contains the following DECLARE MODULE
statements:

DECLARE MODULE
DIALECT MIA

You can control the dialect you want to use by compiling the module with the
appropriate context file:

• For TEST to use the SQL92 semantics, compile TEST using the TEST-
SQL92 context file. The following example shows how to compile the
module on OpenVMS:

$ SQL$MOD
SQL$MOD> TEST TEST-SQL92

• For TEST to use the MIA semantics, compile the module TEST using the
TEST-MIA context file. The following example shows how to compile the
module on OpenVMS:

$ SQL$MOD
SQL$MOD> TEST TEST-MIA

2–270 Language and Syntax Elements

3
SQL Module Language

This chapter describes the SQL module language syntax, how to declare the
length of character string parameters, equivalent SQL and host language data
types, how to use context files with the SQL module language, and how to
invoke the SQL module language processor and nonstored modules. It begins
with a brief overview of the SQL module language and SQL module language
processor.

For information about stored modules, see the CREATE MODULE Statement
or the Oracle Rdb Guide to SQL Programming.

3.1 Overview of the SQL Module Language and Processor
The SQL module language and SQL module processor allow procedures that
contain SQL statements to be called from any host language, including those
not supported by the SQL precompiler.

The SQL module language provides a calling mechanism for host language
programs to execute SQL statements contained in a separate file called an SQL
module file. The file contains module language elements that specify a single
SQL module. The module includes one or more procedures. A procedure can
contain a:

• Simple statement, which consists of a single SQL statement and optional
parameter declarations

• Compound statement, which can include local variable declarations,
multiple SQL statements, flow control statements, and transaction
management statements

A procedure that contains a single SQL statement is called a simple-
statement procedure. A procedure that contains a compound statement,
which can contain multiple SQL statements, is called a multistatement
procedure.

SQL Module Language 3–1

The host language program uses call statements to specify a particular
SQL module procedure and supplies a sequence of actual parameters that
corresponds in number and in data type to the parameter declarations in
the procedure. A call to a procedure in an SQL module causes the simple or
compound statement in the procedure to be executed.

Oracle Rdb recommends using SQL module language, rather than precompiled
SQL, because module language offers the following advantages:

• Module language allows procedures that contain SQL statements to be
called from any host language. In contrast, the SQL precompiler only
supports a subset of host languages: Ada, C, COBOL, FORTRAN, Pascal,
and PL/I.

• Programs that use the SQL module language can isolate all SQL
statements in SQL modules to improve modularity and avoid using
two languages in the same source file.

• Programs can work around restrictions of the SQL precompiler by calling
SQL modules:

Programs that support pointer variables can take full advantage of
dynamic SQL and use the SQLDA and SQLDA2 with the SQL module
language.

SQL module language does not restrict use of host language features
not supported by the precompiler (such as pointer variables in C,
block structure, macros, user-defined types, and references to array
elements).

• Programs written in languages for which there is an ANSI standard can
avoid embedding code that does not conform to the standard by isolating
noncompliant SQL statements in SQL modules.

For a detailed discussion of programming considerations for the SQL module
language, see the Oracle Rdb Guide to SQL Programming.

3–2 SQL Module Language

3.2 SQL Module Language Syntax

The SQL module language provides special keywords and syntax allowing
procedures containing SQL statements to be called from host languages that
are not supported by the SQL precompiler.

Environment

SQL module language elements must be part of an SQL module file.

Format
MODULE

<module-name> DIALECT environment

char-set-options

LANGUAGE language-name
CATALOG <catalog-name>

SCHEMA <schema-name> AUTHORIZATION <auth-id>

PRAGMA (module-pragma-list) module-language-options

procedure-clause
declare-statement

environment =

SQL99
SQL92
SQL89
SQLV40
MIA

SQL Module Language 3–3

char-set-options =

NAMES ARE names-char-set

LITERAL CHARACTER SET support-char-set
NATIONAL CHARACTER SET support-char-set
DEFAULT CHARACTER SET support-char-set
IDENTIFIER CHARACTER SET names-char-set
DISPLAY CHARACTER SET names-char-set

declare-statement =

declare-alias-statement
declare-cursor-statement
declare-statement
declare-table-statement
declare-transaction-statement

module-pragma-list =

DEC_ADA
GNAT_ADA
IDENT string-literal

,

module-language-options =

ALIAS <alias-name>
CHARACTER LENGTH CHARACTERS

OCTETS
DEFAULT DATE FORMAT SQL99

SQL92
VMS

KEYWORD RULES environment
PARAMETER COLONS
QUOTING RULES environment
RIGHTS INVOKER

RESTRICT
VIEW UPDATE RULES environment
QUIET COMMIT ON

OFF
COMPOUND TRANSACTIONS INTERNAL

EXTERNAL

3–4 SQL Module Language

procedure-clause =

PROCEDURE <procedure-name>

param-decl-list ;
(param-decl-list)

simple-statement ;
compound-statement

param-decl-list =

param-decl

,

param-decl =

<parameter-name>

data-type
<domain-name> BY DESCRIPTOR
record-type CHECK

SQLCA
SQLCODE
SQLSTATE

SQLDA
<parameter-name> SQLDA2

SQL Module Language 3–5

record-type =

RECORD

<item-name> data-type END RECORD
record-type

,
FROM <path-name>

FIXED
NULL TERMINATED BYTES
NULL TERMINATED CHARACTERS

INDICATOR ARRAY OF

<array-length>

exact-numeric-type

exact-numeric-type =

SMALLINT
BIGINT (<n>)
TINYINT
INTEGER

(<n>) IS 4 BYTES
8

DECIMAL
NUMERIC (<n>)

, <n>

language-name =

ADA
BASIC
C
COBOL
FORTRAN
PASCAL
PLI
GENERAL

3–6 SQL Module Language

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
BIGINT
LIST OF BYTE VARYING
INTEGER

(<n>) IS 4 BYTES
8

DECIMAL
NUMERIC (<n>)

, <n>
FLOAT

(<n>)
NUMBER

(<p>)
* <d>

REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

SQL Module Language 3–7

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

frac =

(<numeric-literal>)

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

3–8 SQL Module Language

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

Arguments

ALIAS alias-name
Specifies the default alias for the module. If you do not specify a module alias,
the default alias is the authorization identifier for the module.

When the FIPS flagger is enabled, the ALIAS clause (by itself or used with the
AUTHORIZATION clause) is flagged as nonstandard syntax.

If the application needs to refer to only one database across multiple modules,
it is good practice to use the same alias for the default database in all modules
that will be linked to make up an executable image. If that image will
include modules processed with the SQL precompiler, you should specify
RDB$DBHANDLE in the AUTHORIZATION clause of all SQL modules in
the image because the alias RDB$DBHANDLE always designates the default
database in precompiled SQL programs.

AUTHORIZATION auth-id
Specifies the authorization identifier for the module. If you do not specify a
schema authorization, the authorization identifier is the user name of the user
compiling the module.

If you want to comply with the ANSI/ISO SQL89 standard, specify the
AUTHORIZATION clause without the schema-name. Specify both the
AUTHORIZATION clause and the schema name to comply with the ANSI/ISO
SQL99 Standard.

When you attach to a multischema database, the authorization identifier
for each schema is the user name of the user compiling the module. This
authorization identifier defines the default alias and schema. You can use the
ALIAS and SCHEMA clauses to override the defaults.

If you attach to a single-schema database or specify that MULTISCHEMA IS
OFF in your ATTACH or DECLARE ALIAS statements and you specify both
an AUTHORIZATION clause and an ALIAS clause, the authorization identifier
is ignored by SQL unless you specify the RIGHTS clause in the module file.
The RIGHTS clause causes SQL to use the authorization identifier specified

SQL Module Language 3–9

in the module AUTHORIZATION clause for privilege checking. Refer to the
description of the RIGHTS clause later in this section.

If procedures in the SQL module always qualify table names with an
authorization identifier, the AUTHORIZATION clause has no effect on SQL
statements in the procedures.

When the FIPS flagger is enabled, the omission of an AUTHORIZATION clause
is flagged as nonstandard ANSI syntax.

BY DESCRIPTOR
Specifies that the formal parameter will be passed to the calling program
module by descriptor. The BY DESCRIPTOR clause is useful when:

• You specify the GENERAL keyword in the LANGUAGE clause of an
SQL module, but the default for the language is to pass parameters by
descriptor. The default for GENERAL is to pass parameters by reference,
but you can override that default passing mechanism by specifying BY
DESCRIPTOR.

• You want to take advantage of the CHECK option for parameter
declarations. That option is available only for parameters declared with
the BY DESCRIPTOR clause.

• You need to override the default parameter passing mechanism for
languages that pass parameters by reference.

The BY DESCRIPTOR clause supports only OpenVMS static descriptors, which
are fixed-length fields.

For any language, the passing mechanism for SQL module formal parameters
must be the same as the actual parameters in the host language module.

Ada, BASIC, C, FORTRAN, Pascal, and PL/I do not support passing records
by descriptor. You may construct a descriptor from elements in all these
languages and pass the constructed descriptor to the SQL module language by
reference.

• When you construct a descriptor for a host language record when the
module language is Ada, BASIC, C, FORTRAN, Pascal, PL/I, or GENERAL,
use a fixed-length descriptor (CLASS_S) with a character string data type,
and pass the length of the entire record.

• If the language is Ada, BASIC, FORTRAN, or Pascal, pass indicator arrays
using an array descriptor (CLASS_A) and the data type of all of the array
elements.

3–10 SQL Module Language

• If the language is COBOL, pass arrays using fixed-length (CLASS_S)
descriptors and character string data types, regardless of the data types of
the array elements.

• If the language is C, the SQL module processor interprets CHAR fields one
way when the data type is defined in the module, and another way when
the definition is read from the dictionary. When the data type is defined in
the module, the SQL module processor interprets character strings within
records as null-terminated strings. In other words, if you declare a field
specified as CHAR(9), the C module language interprets this as a field
that is actually 10 characters long, with the tenth character being the null
terminator.

However, if you include a record in a C module from the data dictionary,
you can specify any of three options for CHAR field interpretation.
For details, see FIXED, NULL TERMINATED BYTES, and NULL
TERMINATED CHARACTERS in the Arguments section.

CATALOG catalog-name
Specifies the default catalog for the module. Catalogs are groups of schemas
within a multischema database. If you omit the catalog name when specifying
an object in a multischema database, SQL uses the default catalog name
RDB$CATALOG. Databases created without the multischema attribute do
not have catalogs. You can use the SET CATALOG statement to change the
current default catalog name in dynamic or interactive SQL.

CHARACTER LENGTH
Specifies whether the length of character string parameters, columns, and
domains are interpreted as characters or octets. If the dialect is set to SQL89,
SQL92, SQL99 or MIA, the default is CHARACTERS. Otherwise, the default is
OCTETS.

char-data-types
Refer to Section 2.3 for information about the character data types that SQL
supports.

CHECK
Specifies that SQL compares at run time the data type, length, and scale of
the descriptor for an actual parameter to what was declared for the procedure
parameter in the SQL module. If the two do not match, SQL returns an error.
The CHECK clause works only with parameters passed by descriptor from the
calling host language module.

SQL Module Language 3–11

Because there is no connection between an SQL module and a calling host
language program module when they are compiled, there is no way for SQL
to check for agreement between formal parameter declarations and actual
parameters in calls to the module. The CHECK clause provides a way to do
such checking when the program runs.

If a formal parameter declaration does not specify the CHECK clause, SQL
assumes that procedure and calling parameters agree. If they do not, programs
can give unpredictable results. However, you may choose not to use the
CHECK clause because:

• The CHECK clause is not part of ANSI-standard SQL.

• There is a minor performance penalty for SQL to check parameters at run
time.

• Using CHECK can make host programs more complicated.

The CHECK clause follows these rules in comparing formal parameters with
call parameters:

• If a formal parameter is TIMESTAMP data type, the CHECK clause
accepts any corresponding actual parameter that is 8 bytes long.

• If the language is C and the formal parameter is CHAR data type, the
CHECK clause expects the descriptor to be 1 byte longer than the number
of characters in the formal parameter. This occurs because character
strings in C include a terminator character (they are in ASCIZ format) that
is not included in the length of the formal parameter declaration.

When you retrieve data definitions from the dictionary, however, you can
change the default interpretation of character data by specifying FIXED
or NULL TERMINATED CHARACTERS in the record-type clause of the
FROM path-name clause.

• The CHECK clause supports dynamic string descriptors (CLASS_D) in
BASIC for procedure parameters declared with the CHARACTER data
type. However, the CHECK clause does not compare the length of the
descriptor with the length of the procedure parameter because the buffer to
receive the data is allocated at run time.

• If the formal parameter is VARCHAR data type, the descriptor that the
CHECK clause accepts depends on the language.

If the language is PL/I or Pascal (languages that support varying
character data type), the descriptor must be a varying string (CLASS_
VS) descriptor, the data type must be varying text, and the length must
be the same as the length of the formal parameter declaration.

3–12 SQL Module Language

If the language is not PL/I or Pascal, the CHECK clause accepts a
varying string descriptor as in the preceding paragraph, or a fixed-
length (CLASS_S) or unspecified (DTYPE_Z) descriptor with data
type of text and a length 2 bytes longer than the length of the formal
parameter declaration.

For more detail on the different types of OpenVMS argument descriptors, see
the OpenVMS programming documentation.

compound-statement
Most commonly, includes multiple executable SQL statements, associated
variable declarations, and control statements within a BEGIN . . . END block;
however, each of these arguments is optional. For instance, you can create an
empty BEGIN . . . END block (BEGIN END;).

SQL executes the compound statement when the procedure in which it is
embedded is called by a host language module. See the Compound Statement
for more complete information about a compound statement.

COMPOUND TRANSACTIONS INTERNAL
COMPOUND TRANSACTIONS EXTERNAL
Allows you to specify whether SQL should start a transaction before executing
a compound statement or stored procedure.

The COMPOUND TRANSACTIONS EXTERNAL clause instructs SQL
to start a transaction before executing a procedure. The COMPOUND
TRANSACTIONS INTERNAL clause instructs SQL to allow a procedure
to start a transaction as required by the procedure execution.

By default, SQL starts a transaction before executing a compound statement if
there is no current transaction

data-type
You can specify the character set of parameters that are defined as character
data types. SQL assumes the character set of parameters based on the
following rules:

• If a parameter is not qualified by a character set or defined as a national
character data type, SQL considers the parameter to be of the default
character set as specified in the DEFAULT CHARACTER SET clause.

• If a parameter is defined as a national character data type (NCHAR,
NCHAR VARYING), SQL considers the parameter to be of the national
character set as specified in the NATIONAL CHARACTER SET clause.

SQL Module Language 3–13

• If a parameter is defined as a data type qualified by a character set, SQL
considers the parameter to be of that character set.

With the exception of the INTEGER data type, see Section 2.3 and Section 3.5
for information about data types and qualifying a data type with a character
set. The following argument describes the INTEGER data type with regard to
the SQL module language.

The SQL data type specified for the formal parameter in a module must be
equivalent to the data type of the host language variable declaration for the
actual parameter. If the formal parameter and actual parameter are not
declared with equivalent data types, SQL can give unpredictable results.
Section 3.5 shows which host language data types are equivalent to SQL data
types and describes how to convert data types in a module procedure when
there is no equivalent host language data type.

The data type for a database key is CHAR(n), where n equals the number of
bytes of the database key. See Section 2.6.5 for more information on database
keys.

date-time-data-types
frac
interval-qualifier
prec
seconds-prec
For information about specific data types and their qualifiers, see Section 2.3.

declare-statement
Any of the following statements:

• DECLARE ALIAS

• DECLARE CURSOR

• DECLARE STATEMENT

• DECLARE TABLE

• DECLARE TRANSACTION

You must place all DECLARE statements in an SQL module together after
the LANGUAGE clause of the module. All such DECLARE statements are
optional.

All the DECLARE statements except DECLARE TRANSACTION can be
repeated. For each DECLARE CURSOR statement, however, there must be
only one procedure in the SQL module that contains an OPEN statement that
corresponds to the DECLARE CURSOR statement.

3–14 SQL Module Language

Do not use any punctuation to separate DECLARE statements or to separate
the declare-statement section from the procedure section.

DEFAULT CHARACTER SET support-char-set
Specifies the character set for parameters that are not qualified by a character
set and are not defined as a national character data type. If you do not specify
a character set in this clause or in the NAMES ARE clause, the default is
DEC_MCS. This clause overrides the character set specified in the NAMES
ARE clause. See Section 2.1 for a list of the allowable character sets.

DEFAULT DATE FORMAT
Controls the default interpretation for columns with the DATE or
CURRENT_TIMESTAMP data type. The DATE and CURRENT_TIMESTAMP
data types can be either VMS or SQL format.

If you specify VMS, both data types are interpreted as VMS format. The VMS
format DATE and CURRENT_TIMESTAMP contain YEAR to SECOND fields,
like a TIMESTAMP.

If you specify an SQL standard such as SQL99, both data types are interpreted
as SQL format. The SQL format DATE contains only the YEAR to DAY fields.

The default is VMS.

Use the DEFAULT DATE FORMAT clause, rather than the ANSI_DATE
qualifier, because the qualifier will be deprecated in a future release.

DIALECT
Controls the following settings for the current connection:

• Whether the length of character string parameters, columns, and domains
are interpreted as characters or octets

• Whether double quotation marks are interpreted as string literals or
delimited identifiers

• Whether or not identifiers may be keywords

• Which views are read-only

• Whether columns with the DATE or CURRENT_TIMESTAMP data type
are interpreted as VMS or SQL99 format

• Whether or not parameter names begin with a colon

• Whether or not the session character sets change depending on the dialect
specified

SQL Module Language 3–15

The DIALECT clause lets you specify the settings with one clause, instead of
specifying each setting individually. Because the module processor processes
the module clauses sequentially, the DIALECT clause can override the settings
of clauses (for example, QUOTING RULES) specified before it or be overridden
by clauses specified after it.

The following statements are specific to the SQL92 and SQL99 dialects:

• The default constraint evaluation time setting changes from DEFERRABLE
to NOT DEFERRABLE.

• Conversions between character data types when storing data or retrieving
data raise exceptions or warnings in certain situations.

• You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules, and declare host language parameters with packed decimal or
signed numeric storage format. SQL generates an error message if you
attempt to exceed the precision specified.

• The USER keyword specifies the current active user name for a request.

• A warning is generated when a null value is eliminated from a SET
function.

• The WITH CHECK OPTION clause on views returns a discrete error code
from an integrity constraint failure.

• An exception is generated with non-null terminated C strings.

See the SET DIALECT Statement for more information on the settings for
each option of the DIALECT clause.

DISPLAY CHARACTER SET names-char-set
Specifies the character set used for automatic translation between applications
and SQL. If you do not specify a character set the default is DEC_MCS. See
Section 2.1.5 for a list of allowable character sets.

domain-name
You can specify an SQL data type directly or name a domain. If you name a
domain, the parameter inherits the data type of the domain.

FIXED
The FIXED, NULL TERMINATED BYTES, and NULL TERMINATED
CHARACTERS clauses tell the module processor how to interpret C language
text fields. Example 3 in the Usage Notes section shows how the size of the
text field you declare varies according to which of the three interpretation
options you select.

3–16 SQL Module Language

If you specify FIXED, the module processor interprets CHAR fields from the
dictionary as fixed-length character strings.

FROM path-name
Specifies the data dictionary path name of a data dictionary record definition.
You can use this clause to retrieve data definitions from the dictionary.

The data dictionary record definition that you specify cannot contain any
OCCURS clauses or arrays. You must specify a data dictionary record
definition that contains only valid SQL or Oracle Rdb data types.

The FROM path-name clause cannot be used in a second-level record
specification (a record-type that you specify within record-type).

IDENTIFIER CHARACTER SET names-char-set
Specifies the character set used for object names such as cursor names and
table names. If you do not specify a character set in this clause or in the
NAMES ARE clause, the default is DEC_MCS. This clause overrides the
character set specified in the NAMES ARE clause. See Section 2.1.5 for a list
of allowable character sets.

The specified character set must contain ASCII.

Note

If the dialect or character sets are not specified in the module header,
SQL uses the RDB$CHARACTER_SET logical name to determine
the character sets to be used by the database. See Section 2.1.5 and
Appendix E for more detail regarding the RDB$CHARACTER_SET
logical name.

The RDB$CHARACTER_SET logical name is deprecated and will not
be supported in a future release.

INDICATOR ARRAY OF
Specifies a one-dimensional array of elements with one of the data types shown
in the exact-numeric-type diagram. An indicator array provides indicator
parameters for fields in the host structure. The indicator array must have at
least as many elements in it as the record definition has.

You cannot use an indicator array as a record or contain it within a record. In
other words, the INDICATOR ARRAY OF clause cannot be used in a second-
level record specification (a record-type that you specify within record-type).

SQL Module Language 3–17

You cannot explicitly refer to individual elements in an indicator array.
For this reason, you cannot use indicator arrays in UPDATE statements or
WHERE clauses.

For more information about indicator arrays, see Section 2.2.13.2.

item-name
Specifies the name of an item in a record. Do not give the same name for two
record items at the same level in the same record declaration.

When SQL statements within a procedure refer to an item name within a
subrecord in the same procedure as a parameter declaration, they must fully
qualify the item name with the record name and all intervening subrecord
names. Separate record names from item names with periods.

KEYWORD RULES
Controls whether or not identifiers can be keywords. If you specify SQL92,
SQL99, SQL89, or MIA, you cannot use keywords as identifiers, unless you
enclose them in double quotation marks. If you specify SQLV40, you can use
keywords as identifiers. The default is SQLV40.

Use the KEYWORD RULES clause, rather than the ANSI_IDENTIFIER
qualifier, because the qualifier will be deprecated in a future release.

LANGUAGE language-name
A keyword that specifies the name of the host language in which the program is
written. This program calls the procedures in the module. Specify GENERAL
for languages that do not have a corresponding keyword in the LANGUAGE
clause.

The language identifier determines:

• The kinds of data types that the SQL module processor considers valid in
the module’s formal parameter declarations. If a language does not support
a data type equivalent to some SQL data type, the SQL module processor
generates a warning message when it encounters the data type in a formal
parameter. (A formal parameter is the name in an SQL module procedure
declaration that represents the corresponding actual parameter in a host
language call to the SQL module procedure.)

For example, SQL supports the BIGINT data type, but PL/I does not.
The module processor generates a warning message when it encounters
a BIGINT formal parameter in an SQL module that specifies the PL/I
language in the LANGUAGE section.

3–18 SQL Module Language

• The default mechanism for passing parameters to and from a host
language source file. Parameters are always passed by the default passing
mechanism for the language specified in the language clause. Table 3–1
shows those defaults.

Table 3–1 Default Passing Mechanism for Host Languages to SQL Modules

Language Passing Mechanism

Ada By reference
BASIC CHAR by descriptor; all others by reference
C By reference
COBOL By reference
FORTRAN CHAR, SQLCA, SQLDA by descriptor; all others by reference
Pascal By reference
PL/I By reference
GENERAL By reference

• The default data type that SQL expects for certain actual parameters.

In COBOL, for example, if a DOUBLE PRECISION formal parameter is
declared in an SQL module procedure, the procedure expects the parameter
to be passed from the calling module as D_FLOAT rather than G_FLOAT
because COBOL does not support G_FLOAT. Similarly, in C, if a CHAR(n)
formal parameter is declared in an SQL module procedure, the procedure
expects the parameter to be passed from the calling module as an ASCIZ
string with a length of (n+1).

LITERAL CHARACTER SET support-char-set
Specifies the character set for literals that are not qualified by a character set
or national character set. If you do not specify a character set in this clause or
in the NAMES ARE clause, the default is DEC_MCS. This clause overrides the
character set for unqualified literals specified in the NAMES ARE clause. See
Section 2.1 for a list of the allowable character sets.

MODULE module-name
An optional name for the module. If you do not supply a module name, the
default name is SQL_MODULE.

Use any valid operating system name. (See Section 2.2 for more information on
user-supplied names.) However, the name must be unique among the modules
that are linked together to form an executable image.

SQL Module Language 3–19

NAMES ARE names-char-set
Specifies the character set used for the default, identifier, and literal character
sets for the module. This clause also specifies the character string parameters
that are not qualified by a character set or national character set. If you do not
specify a character set, the default is DEC_MCS.

The character set specified in this clause must contain ASCII. See Section 2.1.5
for a list of the allowable character sets.

NATIONAL CHARACTER SET support-char-set
Specifies the character set for literals qualified by the national character
set and for parameters defined as a national character data type (NCHAR,
NCHAR VARYING). If you do not specify a character set in this clause, the
default is DEC_MCS. See Section 2.1 for a list of the allowable character sets.

NULL TERMINATED BYTES
Specifies that text fields from the dictionary are null-terminated. The module
processor interprets the length field in the dictionary as the number of bytes in
the string. If n is the length in the dictionary, then the number of data bytes is
�� � and the length of the string is n bytes.

In other words, the module processor assumes that the last character of the
string is for the null terminator. Thus, a field that the dictionary lists as 10
characters can hold only a 9-character SQL field from the C module language.
(Other module languages could fit a 10-character SQL field into it.)

If you do not specify a character interpretation option, NULL TERMINATED
BYTES is the default.

NULL TERMINATED CHARACTERS
Specifies that CHAR fields from the dictionary are null-terminated, but the
module processor interprets the length field as a character count. If n is the
length in the dictionary, then the number of data bytes is n, and the length of
the string is �� � bytes.

parameter-name
The name for a formal parameter. Use any valid SQL name. See Section 2.2
for more information on user-supplied names.

Formal parameter names do not have to be the same as the host language
variables for the actual parameters to which they correspond. However,
making the names the same is a useful convention for keeping track of which
parameter corresponds to which host language variable.

3–20 SQL Module Language

SQLCA, SQLCODE, SQLDA, SQLDA2, and SQLSTATE are special-purpose
parameters and do not require user-supplied names (although you can
optionally specify a parameter name with SQLDA or SQLDA2).

There are three ways to specify a valid SQL data type for the formal
parameter:

• data-type

• domain-name

• record-type

PARAMETER COLONS
If you use the PARAMETER COLONS clause, all parameter names must
begin with a colon (:). This rule applies to both declarations and references
of module language procedure parameters. If you do not use this clause, no
parameter name can begin with a colon.

The current default behavior is no colons are used. However, this default is
deprecated syntax. In the future, colons will be the default because it allows
processing of ANSI-standard modules.

Use the PARAMETER COLONS clause, rather than the ANSI_PARAMETERS
qualifier, because the qualifier will be deprecated in a future release.

PRAGMA module-pragma-list
This clause allows the program to change processing options for the module.
GNAT_ADA or DEC_ADA direct SQL to use the interface to different Ada
compilers when generating the call interface for the module language routines.
IDENT allows the programmer to record a specific version identification string
in the generated object file. See the Usage Notes for further details.

PROCEDURE procedure-name
Specifies the name of a procedure. Use any valid OpenVMS name.) (See
Section 2.2 for more information on user-supplied names.)

The procedure name is used in host language calls to specify a particular
procedure. In addition to a procedure name, a procedure in an SQL module
must contain one or more parameter declarations and an SQL statement.

QUIET COMMIT ON
QUIET COMMIT OFF
The QUIET COMMIT ON clause disables error reporting for the COMMIT and
ROLLBACK statements if either statement is executed when no transaction
is active. The QUIET COMMIT OFF clause enables error reporting for the

SQL Module Language 3–21

COMMIT and ROLLBACK statements if either statement is executed when no
transaction is active:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON
PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

The QUIET COMMIT OFF clause is the default.

QUOTING RULES
Controls whether double quotation marks are interpreted as string literals
or delimited identifiers. If you specify SQL99, SQL92, SQL89, or MIA, SQL
interprets double quotation marks as delimited identifiers. If you specify
SQLV40, SQL interprets double quotation marks as literals. The default is
SQLV40.

Use the QUOTING RULES clause, rather than the ANSI_QUOTING qualifier,
because the qualifier will be deprecated in a future release.

RECORD . . . END RECORD
Specifies the beginning and end of the record that you are supplying in a
module language parameter declaration.

A record definition cannot contain an SQLDA, an SQLDA2, an SQLCODE, an
SQLCA, or an SQLSTATE.

record-type
You can pass records and indicator arrays to SQL module language procedures
using the record-type clause.

You can also pass records and indicator arrays to SQL module language
procedures and retrieve data dictionary record declarations using the record-
type clause.

If a record reference has an indicator, it must be an indicator array. Specify
the INDICATOR ARRAY OF clause instead of an item name or path name.

The following example shows the use of record structures and indicator arrays
in an SQL module language program. Because parameters in the module are
preceded by colons, you must include the PARAMETER COLONS clause in the
module header.

3–22 SQL Module Language

MODULE employee_module
LANGUAGE pascal
AUTHORIZATION pers
PARAMETER COLONS

DECLARE pers ALIAS FOR FILENAME mf_personnel

DECLARE WORK_STATUS_CURSOR CURSOR FOR
SELECT *
FROM PERS.WORK_STATUS

PROCEDURE OPEN_WORK_STATUS
SQLCODE;

OPEN WORK_STATUS_CURSOR;

PROCEDURE CLOSE_WORK_STATUS
SQLCODE;

CLOSE WORK_STATUS_CURSOR;

PROCEDURE FETCH_EMPS_TO_DEPS_CURSOR
SQLCODE,
:work_status_rec

record
status_code PERS.work_status.STATUS_CODE_DOM
status_name PERS.work_status.STATUS_NAME_DOM
status_type PERS.work_status.STATUS_DESC_DOM
end record

:ind_array
record
indicator array of 3 SMALLINT
end record

;
FETCH WORK_STATUS_CURSOR
INTO :work_status_rec INDICATOR :ind_array;

RIGHTS
Specifies whether or not a module must be executed by a user whose
authorization identifier matches the module authorization identifier.

If you specify RESTRICT, SQL bases privilege checking on the default
authorization identifier. The default authorization identifier is the
authorization identifier of the user who compiles a module unless you specify
a different authorization identifier using an AUTHORIZATION clause in the
module. The RESTRICT option causes SQL to compare the user name of
the person who executes a module with the default authorization identifier
and prevent any user other than one with the correct authorization identifier
from invoking that module. All applications that use multischema will be the
invoker by default.

SQL Module Language 3–23

If you specify INVOKER, SQL bases the privilege on the authorization
identifier of the user running the module.

The default is INVOKER.

Use the RIGHTS clause, rather than the ANSI_AUTHORIZATION qualifier,
because the qualifier will be deprecated in a future release.

SCHEMA schema-name
Specifies the default schema name for the module. The default schema is the
schema to which SQL statements refer if those statements do not qualify table
and other schema names with an authorization identifier. If you do not specify
a default schema name for a module, the default schema name is the same as
the authorization identifier.

Using the SCHEMA clause, separate SQL modules can each declare different
schemas as default schemas. This can be convenient for an application that
needs to refer to more than one schema. By putting SQL statements that refer
to a schema in the appropriate module’s procedures, you can minimize tedious
qualification of schema element names in those statements.

When you specify SCHEMA schema-name AUTHORIZATION authorization-
name, you specify the schema name and the schema authorization identifier
for the module. The schema authorization identifier is considered the owner
and creator of the schema and everything in it.

When the FIPS flagger is enabled for entry-level SQL92 or lower, the SCHEMA
clause (by itself or used with the AUTHORIZATION clause) is flagged as
nonstandard ANSI syntax.

If procedures in the SQL module always qualify table names with an
authorization identifier, the SCHEMA clause has no effect on SQL statements
in the procedures.

SQLCA
A formal parameter for the SQLCA (see Appendix C for more information
on the SQLCA). The calling program module must declare a record that
corresponds to the structure of the SQLCA and specify that record declaration
as the calling parameter for the SQLCA formal parameter. Appendix C.3 gives
examples of record declarations for the SQLCA parameter for supported calling
languages.

Specifying SQLCA as a formal parameter is an alternative to specifying
SQLCODE. Using SQLCA instead of SQLCODE lets the calling program
module take advantage of the information SQL puts in the third element of the
SQLERRD array in the SQLCA. Future versions of SQL may use the SQLCA
for additional information.

3–24 SQL Module Language

SQLCODE
A formal parameter that SQL uses to indicate the execution status of the
SQL statement in the procedure. The SQLCODE formal parameter does not
require a data type declaration; SQL automatically declares SQLCODE with an
INTEGER data type. However, the calling program module must still declare
an integer variable for the actual parameter that corresponds to SQLCODE.
The SQLCODE parameter must be passed by reference.

Oracle Rdb recommends that you use the SQLSTATE status parameter rather
than SQLCODE. SQLSTATE complies with ANSI/ISO SQL standard and
SQLCODE may be deprecated in a future release of Oracle Rdb.

See Table C-1 for more information about SQLCODE.

SQLDA
SQLDA2
A formal parameter for the SQLDA or SQLDA2 (see Appendix D for more
information on the SQLDA and SQLDA2). The calling program module must
declare a record that corresponds to the structure of the SQLDA or SQLDA2
and specify that record declaration as the calling parameter for the SQLDA or
SQLDA2 formal parameter. You can optionally precede SQLDA or SQLDA2
in the parameter declaration with another name the SQL statement in the
module procedure can use to refer to the SQLDA or SQLDA2. Appendix D
gives examples of record declarations for the SQLDA and SQLDA2 parameters
for supported calling languages.

SQLSTATE
A formal parameter that SQL uses to indicate the execution status of the
SQL statement in the procedure. The SQLSTATE formal parameter does not
require a data type declaration; SQL automatically declares SQLSTATE with
a CHAR(5) data type. However, the calling program module must still declare
a character variable for the actual parameter that corresponds to SQLSTATE.
The SQLSTATE parameter must be passed by reference.

Oracle Rdb recommends that you use the SQLSTATE status parameter rather
than SQLCODE. SQLSTATE complies with the ANSI/ISO SQL standard and
SQLCODE may be deprecated in a future release of Oracle Rdb.

VIEW UPDATE RULES
Specifies whether or not the SQL module processor applies the ANSI/ISO
standard for updatable views to all views created during compilation.

SQL Module Language 3–25

If you specify SQL92, SQL99, SQL89, or MIA, the SQL module processor
applies the ANSI/ISO standard for updatable views to all views created
during compilation. Views that do not comply with the ANSI/ISO standard for
updatable views cannot be updated. The default is SQLV40.

The ANSI/ISO standard for updatable views requires the following conditions
to be met in the SELECT statement:

• The DISTINCT keyword is not specified.

• Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

If you specify SQLV40, SQL does not apply the ANSI/ISO standard for
updatable views. Instead, SQL considers views that meet the following
conditions to be updatable:

• The DISTINCT keyword is not specified.

• The FROM clause refers to only one table. This table must be either a base
table or a view that can be updated.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

Usage Notes

• Procedures in an SQL module can be in any order. They do not have to
correspond to the order in which they are called by a host language module.

• When you use the SQL module processor and specify the C module
language, SQL translates all C character strings as null-terminated
strings. This means that when SQL passes these character strings from
the database to the program, it reserves space at the end of the string
for the null character. When a program passes a character string to the
database for input, SQL looks for the null character to determine how

3–26 SQL Module Language

many characters to store in the database. SQL stores only those characters
that precede the null character; it does not store the null character.

Because of the way in which SQL translates C character strings, you may
encounter problems with applications that pass binary data to and from
the database. To avoid these problems when you use the SQL module
language with a C host language program, specify the module language as
GENERAL.

When you retrieve data definitions from the dictionary, you can change
the default translation of character data by specifying a character
interpretation option in the record-type clause in the FROM path-name
clause. For more information, see the descriptions of FIXED, NULL
TERMINATED BYTES, and NULL TERMINATED CHARACTERS in the
Arguments section.

The way in which SQL translates C character strings also affects programs
that use the SQL INCLUDE or the SQL FROM path-name clause to copy
record definitions from a data dictionary.

• The double hyphen (--) specifies that all remaining text on a line is a
comment. The SQL module processor therefore ignores any text to the
right of a double hyphen when it processes source files. You can also
use blank lines to make your SQL module source file easier to read and
understand. In addition, you can specify a comment on the same line as,
but to the right of, any code that the SQL module processor requires. For
example:

DECLARE VI_DB ALIAS
FOR FILENAME personnel -- Declare the alias for the database.

• You cannot continue a keyword, user-defined name, or literal (such as a
quoted string) from one line to the next in SQL modules. Completely enter
any of these on one line of your SQL module source file.

• Programs that call SQL modules and need to use the SQLCA and message
vector for error handling must declare those structures explicitly. For
information on declaring the SQLCA and message vector, see Appendix C.

• You can use SQL error handling routines such as sql_signal and sql_get_
error_text routines in module language programs. For more information,
see the Oracle Rdb Guide to SQL Programming.

• You cannot specify a WHENEVER statement in an SQL module.
Furthermore, you cannot embed a WHENEVER statement in a host
language source file that will be precompiled and expect it to apply to your
calls to SQL module procedures. The WHENEVER statement is supported

SQL Module Language 3–27

only by the SQL precompiler, which can identify only SQL statements
embedded in a host language source file.

Instead of an embedded WHENEVER statement, use a host language
conditional statement to evaluate the SQL statement status field (called
SQLCODE in the SQLCA) or the SQLSTATE status parameter (ANSI/ISO
SQL standard) immediately following the call. For general information on
error handling in programs, see the chapter on handling run-time errors in
the Oracle Rdb Guide to SQL Programming.

• A host language program module can refer to more than one SQL module
in its calls.

• If a DECLARE TABLE statement appears before a CREATE DATABASE
statement, your compilation could fail with an error message indicating
that SQL$DATABASE or SQL_DATABASE could not be opened or that
certain database objects could not be found in your database.

The SQL module language compiler processes metadata statements before
other statements. If your DECLARE TABLE statement is found before the
CREATE DATABASE (or CREATE ALIAS) statement that defines it, then
SQL will try to attach to SQL$DATABASE or SQL_DATABASE for the
metadata lookups.

Place your CREATE DATABASE or CREATE ALIAS statement before your
DECLARE TABLE statements.

• By using the PRAGMA clause with IDENT you can record an identification
string in the object module generated by the SQL Module language.
This IDENT string is recorded by the OpenVMS LINKER in the image
itself and can be viewed in the generated MAP file, examined using
ANALYZE/OBJECT, and by the LIBRARIAN command when the object
module is stored in an object library.

OpenVMS limits the IDENT string to a 15 octet string. If the string is
longer than this (even with trailing spaces) then an error will be reported
by the SQL Module Language compiler.

If the IDENT clause is omitted, then the default version string will default
to ’V1.0’ as is the practice with many OpenVMS compilers. Prior versions
of Oracle Rdb on Integrity systems would only provide the string ’0’.

Module name: "MODSQL$TEST"
Module version: "0"
Creation date/time: "15-JUN-2009 20:13"
Language name: "Oracle Rdb SQL V7.2-351"

3–28 SQL Module Language

• When PRAGMA (GNAT_ADA) is specified, the SQL Module Language
compiler calls GNAT COMPILE to compile a generated Ada package
specification which has the same name as the module and the suffix .ADS.

Examples

Example 1: Calling an SQL module procedure from a Pascal program

The following example is a Pascal program that calls a procedure in an SQL
module file:

PROGRAM list_employees(OUTPUT);

{
Program to list employees’ names whose last name matches a LIKE
predicate.
Note the following:
1) The input parameter (like_string) to the SELECT expression

in the DECLARE CURSOR is supplied on the OPEN_CURSOR call.
2) The output parameters are returned on each FETCH_INTO call.
3) The cursor is closed after the desired rows are processed,

so that it will be positioned properly in subsequent
operations.

}

TYPE
LAST_NAME = PACKED ARRAY[1..14] OF CHAR;
FIRST_NAME = PACKED ARRAY[1..10] OF CHAR;

VAR
{ Variable data }

sqlcode : INTEGER := 0;
emp_last : LAST_NAME;
emp_first: FIRST_NAME;
like_string : LAST_NAME := ’T_ _ _ _ _ _ _ _ _ _ _ _ _’;

{ Declarations of entry points in the SQL module }

PROCEDURE SET_TRANS (VAR sqlcode : INTEGER); EXTERNAL;
PROCEDURE OPEN_CURSOR (VAR sqlcode: INTEGER;

name : LAST_NAME); EXTERNAL;
PROCEDURE FETCH_INTO (VAR sqlcode : INTEGER;

VAR last : LAST_NAME;
VAR first : FIRST_NAME); EXTERNAL;

PROCEDURE CLOSE_CURSOR (VAR sqlcode : INTEGER); EXTERNAL;
PROCEDURE ROLLBACK_TRANS (VAR sqlcode : INTEGER); EXTERNAL;

SQL Module Language 3–29

BEGIN
SET_TRANS (sqlcode); { Start a read-only transaction.}
OPEN_CURSOR (sqlcode, like_string);{ Open the cursor, supplying }

{ the string to match against. }
WRITELN(’Matching Employees:’); { Print header. }
REPEAT { Iterate matching names. }
BEGIN
FETCH_INTO (sqlcode, emp_last, emp_first);{ Fetch the next name. }
IF sqlcode = 0
THEN
WRITELN(emp_first, emp_last); { Print employee information. }

END
UNTIL sqlcode <> 0;
IF sqlcode <> 100 { Print any error information. }
THEN
WRITELN (’SQL error code = ’, sqlcode);

CLOSE_CURSOR (sqlcode); { Finish the cursor operation. }
ROLLBACK_TRANS (sqlcode); { Finish the transaction. }
END.

Here is the SQL module file that this program calls:

MODULE employees
LANGUAGE PASCAL
AUTHORIZATION SQL_USER
ALIAS RDB$DBHANDLE

DECLARE ALIAS FOR FILENAME PERSONNEL

DECLARE names CURSOR FOR
SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE match_string

PROCEDURE SET_TRANS
SQLCODE;
SET TRANSACTION READ ONLY;

PROCEDURE OPEN_CURSOR
SQLCODE
match_string CHAR(14);
OPEN names;

PROCEDURE FETCH_INTO
SQLCODE
l_name CHAR(14)
f_name CHAR(10);
FETCH names INTO l_name, f_name;

PROCEDURE CLOSE_CURSOR
SQLCODE;
CLOSE names;

3–30 SQL Module Language

PROCEDURE ROLLBACK_TRANS
SQLCODE;
ROLLBACK;

Example 2: Calling an SQL module procedure from a C program

The following example is a C program that calls a procedure that is in an SQL
module file:

/*
C program to list employees’ names where the last name matches a LIKE
predicate.
Note the following:
1) The input parameter (like_string) to the SELECT expression

in the DECLARE CURSOR is supplied on the OPEN_CURSOR call.
2) The output parameters are returned on each FETCH_INTO call.
3) The cursor is closed after the desired rows are processed,

so that it will be positioned properly in subsequent operations.
*/

#include <stdio.h>

#pragma dictionary "name"

typedef struct name NAME_TYPE;
extern void FETCH_INTO (int *sqlcode, NAME_TYPE *name_record);

typedef char LAST_NAME[15];
typedef int *SQLCODE;

/* Declarations of entry points in the SQL module */

extern void SET_TRANS (int *sqlcode);
extern void OPEN_CURSOR (int *sqlcode,

LAST_NAME name);

extern void CLOSE_CURSOR (int *sqlcode);
extern void ROLLBACK_TRANS (int *sqlcode);

void main ()
{
int sqlcode = 0;
NAME_TYPE name_record;
LAST_NAME like_string = "T%";

SET_TRANS (&sqlcode); /* Start a read-only transaction. */
if (sqlcode != 0) /* Print any error information. */
printf ("SQL error code = %d\n", sqlcode);

OPEN_CURSOR (&sqlcode, like_string); /* Open the cursor, supplying */
/* the string to match against. */

if (sqlcode != 0) /* Print any error information. */
printf ("SQL error code = %d\n", sqlcode);

SQL Module Language 3–31

printf ("Matching Employees:\n"); /* Print header. */
do /* Iterate matching names. */
{
FETCH_INTO (&sqlcode, &name_record);/* Fetch the next name. */
if (sqlcode == 0)
printf ("%s%s\n", name_record.f_name, name_record.l_name);
} /* Print employee information. */
while (sqlcode == 0);
if (sqlcode != 100) /* Print any error information. */
printf ("SQL error code = %d\n", sqlcode);

CLOSE_CURSOR (&sqlcode); /* Complete the cursor operation. */
if (sqlcode != 0) /* Print any error information. */
printf ("SQL error code = %d\n", sqlcode);

ROLLBACK_TRANS (&sqlcode); /* Finish the transaction. */
if (sqlcode != 0) /* Print any error information. */
printf ("SQL error code = %d\n", sqlcode);

}

Here is the SQL module file that this program calls:

MODULE employees
LANGUAGE C
AUTHORIZATION SQL_USER
ALIAS RDB$DBHANDLE

DECLARE ALIAS FOR PATHNAME ’MF_PERSONNEL’

DECLARE names CURSOR FOR
SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEES
WHERE LAST_NAME LIKE match_string

PROCEDURE SET_TRANS
SQLCODE;
SET TRANSACTION READ ONLY;

PROCEDURE OPEN_CURSOR
SQLCODE
match_string CHAR(14);
OPEN names;

PROCEDURE FETCH_INTO
SQLCODE,
name_record RECORD FROM ’name’ END RECORD;
FETCH names INTO name_record;

PROCEDURE CLOSE_CURSOR
SQLCODE;
CLOSE names;

PROCEDURE ROLLBACK_TRANS
SQLCODE;
ROLLBACK;

3–32 SQL Module Language

Here is a CDO command file that defines metadata used by the C program and
SQL module. Field L_NAME has 15 characters, although the match_string in
the SQL module file allows only 14 characters. The C programming language
uses the character record and can only store a maximum of 14 characters
plus the null terminator that C requires by default for character strings. See
Example 3 for other character string interpretation options.

! MOD_LANG.CDO
!
! This file defines an Oracle CDD/Repository record to be used by
! the SQL module language module called from a C program.
!

DEFINE FIELD L_NAME DATATYPE TEXT 15.
DEFINE FIELD F_NAME DATATYPE TEXT 11.

DEFINE RECORD NAME.
L_NAME.
F_NAME.
END RECORD.

Example 3: Declaring text fields for the three different C language
interpretation options

/* SQL$TEXT_FIELDS.C
* This program demonstrates the use of DEC C and the SQL module language
* to show different formats for text fields from the record PARTS,
* stored in the repository. The program tests each fetched field
* to make sure that it ends in a null character if it is supposed to.
*
* The program calls the SQL module SQL$TEXT_FIELDS_C.SQLMOD.
* To create and populate the database for this example, you must run
* the command procedure SQL$TEXT_FIELDS.SQL. You must also have the
* data dictionary installed on your system.
*
*/
#include stdio
main()
{
int sqlcode;
int i;
int fixed_okay;

SQL Module Language 3–33

/* Host variables for SQL calls.
* Structure P_NTC shows the definition for a text
* string interpreted with the NULL TERMINATED CHARACTERS option.
* Character strings for P_NTC are 1 byte longer than those
* character strings in the other three structures.
* A field with a length of 7 bytes contains 6 characters
* followed by the null value.
*/
struct

{ char pnum[7];
char pname[21];
char color[7];
short weight;
char city[16]; } p_ntc;

/*
* Structure P_NTB shows the definition for a text
* string interpreted with the NULL TERMINATED BYTES option.
* A field with a length of 6 bytes contains 5 characters
* followed by the null value.
*/
struct

{ char pnum[6];
char pname[20];
char color[6];
short weight;
char city[15]; } p_ntb;

/*
* Structure P_DEFAULT shows the definition for a text
* string interpreted without a character interpretation
* option. The default interpretation is the same as
* NULL TERMINATED BYTES; a field with a length of 6 bytes
* contains 5 characters followed by the null value.
*/
struct

{ char pnum[6];
char pname[20];
char color[6];
short weight;
char city[15]; } p_default;

/*
* Structure P_FIXED shows the definition for a text
* string interpreted with the FIXED option.
* A field with a length of 6 bytes contains 6
* characters. There is no null value added to the field.
*/
struct

{ char pnum[6];
char pname[20];
char color[6];
short weight;
char city[15]; } p_fixed;

3–34 SQL Module Language

open_p(&sqlcode);
fetch_p_default(&sqlcode, &p_default);
close_p(&sqlcode);
printf("%s, %s, %s, %s\n", p_default.pnum, p_default.pname,p_default.color,

p_default.city);
for (i=0;i<6;i++) {

if (p_default.pnum[i] == ’\0’) {
if (i != 5) {

printf("NULL not terminating in DEFAULT\n");
} else {

printf("DEFAULT is okay\n");
}

}
}
open_p(&sqlcode);
fetch_p_fixed(&sqlcode, &p_fixed);
close_p(&sqlcode);
printf("%0.6s, %0.20s, %0.6s, %0.15s\n", p_fixed.pnum, p_fixed.pname,p_fixed.color,

p_fixed.city);
fixed_okay = 1;
for (i=0;i<6;i++) {

if (p_fixed.pnum[i] == ’\0’) {
fixed_okay = 0;

};
};
if (fixed_okay == 0) {

printf("NULL in fixed string\n");
} else {

printf("FIXED is okay\n");
};
open_p(&sqlcode);
fetch_p_ntb(&sqlcode, &p_ntb);
close_p(&sqlcode);
printf("%s, %s, %s, %s\n", p_ntb.pnum, p_ntb.pname,p_ntb.color,

p_ntb.city);
for (i=0;i<6;i++) {

if (p_ntb.pnum[i] == ’\0’) {
if (i != 5) {

printf("NULL not terminating in NTB\n");
} else {

printf("NTB is okay\n");
}

}
}

SQL Module Language 3–35

open_p(&sqlcode);
fetch_p_ntc(&sqlcode, &p_ntc);
close_p(&sqlcode);
printf("%s, %s, %s, %s\n", p_ntc.pnum, p_ntc.pname,p_ntc.color,

p_ntc.city);
for (i=0;i<7;i++) {

if (p_ntc.pnum[i] == ’\0’) {
if (i != 6) {

printf("NULL not terminating in NTC\n");
} else {

printf("NTC is okay\n");
}

}
}

}

Here is the SQL module file that this program calls:

-- This SQL module provides the SQL procedures needed by the
-- SQL$TEXT_FIELDS.C program. The module illustrates the three
-- different ways that you can specify text fields in the
-- repository using the C programming language:
-- NULL TERMINATED BYTES, the default
-- NULL TERMINATED CHARACTERS
-- FIXED (no null)
-- FIXED (no null)
--
-- Because this module precedes parameter names with colons,
-- in compliance with the ANSI/ISO SQL standard, you must supply
-- the PARAMETER COLONS clause in the module header.

-- Header Information Section

MODULE SQL_TEXT_FIELDS_C
LANGUAGE C
AUTHORIZATION SQL_SAMPLE
PARAMETER COLONS

-- DECLARE Statements Section

DECLARE ALIAS FILENAME ’SUPPLIES’

DECLARE P_CURSOR CURSOR FOR SELECT * FROM PARTS

-- Procedure Section
-- In every procedure, declare SQLCODE, a parameter that stores a value
-- representing the execution status of SQL statements.

PROCEDURE open_p
SQLCODE;

3–36 SQL Module Language

OPEN P_CURSOR;

-- This procedure specifies the repository record PARTS using the
-- repository path name. Because none of the character interpretation
-- options is specified, output for a field defined as TEXT SIZE 6
-- in the repository or CHAR (6) in SQL will show the default interpretation,
-- NULL TERMINATED BYTES, a field of 6 bytes that contains 5
-- characters followed by a null value.

PROCEDURE fetch_p_default
SQLCODE
:P_REC RECORD FROM ’CDD$DEFAULT.SUPPLIES.RDB$RELATIONS.PARTS’ END RECORD;

FETCH P_CURSOR INTO :P_REC;

-- This procedure specifies the repository record PARTS using the
-- repository path name. Because the FIXED option is specified,
-- output for a field defined as TEXT SIZE 6 in the repository or
-- CHAR (6) in SQL will be a field of 6 bytes that contains
-- 6 characters. There is no null value.

PROCEDURE fetch_p_fixed
SQLCODE
:P_REC RECORD FROM ’CDD$DEFAULT.SUPPLIES.RDB$RELATIONS.PARTS’
FIXED END RECORD;

FETCH P_CURSOR INTO :P_REC;

-- This procedure specifies the repository record PARTS using the
-- repository path name. Because the NULL TERMINATED BYTES
-- option is specified, output for a field defined as TEXT SIZE 6
-- in the repository or CHAR (6) in SQL will be a field of 6 bytes
-- that contains 5 characters followed by the null value.

PROCEDURE fetch_p_ntb
SQLCODE
:P_REC RECORD FROM ’CDD$DEFAULT.SUPPLIES.RDB$RELATIONS.PARTS’
NULL TERMINATED BYTES END RECORD;

FETCH P_CURSOR INTO :P_REC;

-- This procedure specifies the repository record PARTS using the
-- repository path name. Because the NULL TERMINATED CHARACTERS
-- option is specified, output for a field defined as TEXT SIZE 6
-- in the repository or CHAR (6) in SQL will be a field of 7
-- bytes that contains 6 characters followed by the null value.

PROCEDURE fetch_p_ntc
SQLCODE
:P_REC RECORD FROM ’CDD$DEFAULT.SUPPLIES.RDB$RELATIONS.PARTS’
NULL TERMINATED CHARACTERS END RECORD;

FETCH P_CURSOR INTO :P_REC;

PROCEDURE close_p
SQLCODE;

SQL Module Language 3–37

CLOSE P_CURSOR;

Here is the SQL command procedure to create and populate the database used
in these examples:

!
! This SQL procedure creates and populates the database used by
! the module language file SQL$TEXT_FIELDS_C.SQLMOD.
!
SET VERIFY
CREATE DATABASE FILENAME PERSONNEL PATHNAME ’CDD$TOP.PERSONNEL’;
CREATE TABLE S (SNUM CHAR (5), SNAME CHAR (20), STATUS SMALLINT, CITY CHAR(15));
CREATE TABLE P (PNUM CHAR (6), PNAME CHAR(20), COLOR CHAR(6),
WEIGHT SMALLINT, CITY CHAR(15));

INSERT INTO P (PNUM, PNAME, COLOR, WEIGHT, CITY)
VALUES (’P1’, ’Nut’, ’Red’, 12, ’London’);
COMMIT;
DISCONNECT ALL;

Example 4: PRAGMA clause in the module header

The following example shows the use of a PRAGMA clause in a module header
to specify that the module ident string.

MODULE MODSQL$TEST
DIALECT SQL99
LANGUAGE C
AUTHORIZATION SAMPLE_USER
PRAGMA (IDENT ’V1.2-300’)
ALIAS RDB$DBHANDLE
PARAMETER COLONS

.

.

.

Example 5: Examining the IDENT in the object module

The DCL command ANALYZE/OBJECT can be used to examine the ident
string in the object file.

$ sql$mod TEST
$ analyze/object TEST/interactive
This is an OpenVMS IA64 (Elf format) object file

Module Identification Information, in note section 2.

Module name: "MODSQL$TEST"
Module version: "V1.2-300"
Creation date/time: "15-JUN-2009 20:04"
Language name: "Oracle Rdb SQL V7.2-401"

Press RETURN to continue, or enter a period (.) for next file:
<Ctrl/Z>
$

3–38 SQL Module Language

Here is similar output from an OpenVMS Alpha system

$ sql$mod TEST
$ analyze/object TEST

.

.

.
This is an OpenVMS Alpha object file
1. MODULE HEADER (EOBJ$C_EMH), 71 bytes

structure level: 2
maximum record size: 4088
module name: "MODSQL$TEST"
module version: "V1.0"
creation date/time: 16-JUN-2009 11:02

.

.

.

Example 6: Use of LIBRARIAN to display the ident strings

This example shows the use of the LIBRARIAN to display the ident strings for
object modules in a project object library.

$ librarian/list/full project.olb
Directory of ALPHA OBJECT library DISK1:[TESTER]PROJECT.OLB;1 on 16-JUN-2009 11:07:23
Creation date: 16-JUN-2009 11:07:11 Creator: Librarian A09-30
Revision date: 16-JUN-2009 11:07:11 Library format: 3.0
Number of modules: 1 Max. key length: 128
Other entries: 5 Preallocated index blocks: 213
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0

MODSQL$TEST Ident V1.2-300 Inserted 16-JUN-2009 11:07:11 5 symbols

SQL Module Language 3–39

3.3 Declaring the Length of Character Parameters
To ensure that you specify the length of character string parameters correctly,
use the following guidelines:

• For C host language programs that call SQL modules declared with
LANGUAGE C, any character parameters that correspond to character
data type columns must be defined as the length of the longest valid
column value in octets, plus 1 octet to allow for the null terminator.

• For other host language programs (or C host language programs that
call SQL modules declared with LANGUAGE GENERAL), any character
parameters that correspond to character data type columns must be defined
as the length of the longest valid column value in octets.

• When calculating the length of the longest valid column value, you must
take into consideration the number of octets for each character in the
character set of the column and whether the SQL module language
interprets the length of columns in characters or octets. A program can
control how the SQL module language interprets the length of columns in
the following ways:

The CHARACTER LENGTH clause of the module header or DECLARE
MODULE statement

The DIALECT clause of the module header or DECLARE MODULE
statement

For dynamic SQL, the SET CHARACTER LENGTH statement

See Table 2–2 for information about the number of octets used for one
character in each character set.

Assume that you create the database MIA_CHAR_SET with the following
character sets:

• Default character set: DEC_KANJI

• National character set: KANJI

• Identifier character set: DEC_KANJI

Then, assume that the database contains the table COLOURS and that the
columns in that table are defined as shown in the following example:

3–40 SQL Module Language

SQL> SHOW DOMAINS;
User domains in database with filename MIA_CHAR_SET
ARABIC_DOM CHAR(8)

ISOLATINARABIC 8 Characters, 8 Octets
DEC_KANJI_DOM CHAR(16)
GREEK_DOM CHAR(8)

ISOLATINGREEK 8 Characters, 8 Octets
HINDI_DOM CHAR(8)

DEVANAGARI 8 Characters, 8 Octets
KANJI_DOM CHAR(8)

KANJI 4 Characters, 8 Octets
KATAKANA_DOM CHAR(8)

KATAKANA 8 Characters, 8 Octets
MCS_DOM CHAR(8)

DEC_MCS 8 Characters, 8 Octets
RUSSIAN_DOM CHAR(8)

ISOLATINCYRILLIC 8 Characters, 8 Octets
SQL> --
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(8) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(16) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL>

The following excerpt from an SQL module program shows how to specify the
character sets, and how the character length is allocated in the module header:

SQL Module Language 3–41

-- Header Information Section

MODULE SQL_MIA_CHAR_SET_C -- Module name
DIALECT SQL92 -- Sets the character length to CHARACTERS
NAMES ARE DEC_KANJI -- Names character set
NATIONAL CHARACTER SET KANJI -- National character set
DEFAULT CHARACTER SET DEC_KANJI -- Default character set
LANGUAGE C -- Language of calling program
AUTHORIZATION SQL_SAMPLE -- Default authorization ID
ALIAS RDB$HANDLE -- Default alias

.

.

.

-- When you declare character string parameters, you must take into
-- account the character set of the corresponding SQL column, whether
-- the characters are single- or multiple-octet characters, and
-- whether the module specified the character length in octets
-- or characters.
--

-- Create domains

PROCEDURE CREATE_DOMAIN_MCS
SQLCODE;
CREATE DOMAIN MCS_DOM CHAR (8) CHARACTER SET DEC_MCS;

--
-- The CREATE DATABASE statement and the module header identify
-- KANJI as the national character set. Thus, you can declare
-- the KANJI_DOM domain as data type NCHAR.
--

PROCEDURE CREATE_DOMAIN_KANJI
SQLCODE;
CREATE DOMAIN KANJI_DOM NCHAR (4);

--
-- Because the module header and the CREATE DATABASE statement
-- define DEC_KANJI as the default character set, you do not
-- have to identify the character set for the DEC_KANJI_DOM
-- domain.
--

PROCEDURE CREATE_DOMAIN_DEC_KANJI
SQLCODE;
CREATE DOMAIN DEC_KANJI_DOM CHAR (8);

PROCEDURE CREATE_DOMAIN_KATAKANA
SQLCODE;
CREATE DOMAIN KATAKANA_DOM CHAR (8) CHARACTER SET KATAKANA;

3–42 SQL Module Language

.

.

.

You declare the corresponding parameters in the C host language program as
shown in the following example:

/* When you declare character string parameters, you must take into */
/* account the character set of the corresponding SQL column, whether */
/* the characters are single- or multiple-octet characters, and */
/* whether the module specifies the character length in octets */
/* or characters. */

typedef char colour_string_t[17];

long sqlcode;

enum languages
{
ENGLISH,
FRENCH,
JAPANESE,
ROMAJI,
KATAKANA,
HINDI,
GREEK,
ARABIC,
RUSSIAN,
MAX_LANGUAGE
};

enum colours
{
MAX_COLOUR = 6
};

static char *language_name[] = /* (NOTE: in the same sequence as the enum) */
{
"ENGLISH ",
"FRENCH ",
"JAPANESE ",
"ROMAJI ",
"KATAKANA ",
"HINDI ",
"GREEK ",
"ARABIC ",
"RUSSIAN ",
};

main()
{
static colour_string_t prism[MAX_LANGUAGE][MAX_COLOUR];
int colour_count;
int language;
int colour;

SQL Module Language 3–43

CREATE_MIA_CHAR_SET_DB(&sqlcode);
if (sqlcode != SUCCESS)

check_error();

.

.

.

3.4 Floating Point Number Representations
OpenVMS supports multiple representations for floating point numbers.
These representations include the VAX F-Floating and IEEE S-Floating
representations for single-precision (4 octet) numbers and the VAX G-Floating
and D-Floating and the IEEE T-Floating representations for double-precision
(8 octet) numbers. Modules generated by the SQL module language processor
and by various host language processors support these representations for
their single- and double-precision floating point data types. Host language
modules which call SQL module language modules must have the floating
point representations defined consistently with the procedure parameters
of those modules or the values of the floating point numbers will not be
correctly interpreted. This is true even if the host language and SQL
data types are equivalent. For SQL module language, the floating point
representation is determined by the value of the /FLOAT qualifier on the
command line (see Section 3.6 for more details on the /FLOAT qualifier).
For the host languages, it is determined by a combination of a /FLOAT or
/[NO]G_FLOAT qualifier and/or internal language support for floating point
representations (see Section 3.5 for details on matching host language floating
point representations). The following code examples show how to ensure
floating point representation consistency for various host languages using the
IEEE formats.

In the discussion of actual parameter types below, examples will refer to
the following SQL Module Language procedure which is assumed to yield a
singleton select:

PROCEDURE GET_FLOATS (SQLCODE, REAL :P_FLOAT1, DOUBLE PRECISION :P_FLOAT2);
BEGIN

SELECT MY_FLOAT1, MY_FLOAT2 INTO :P_FLOAT1, :P_FLOAT2 FROM A_TABLE
WHERE KEY_VALUE = "1";

END;

The following example shows an Ada code fragment which is compatible with
the GET_FLOATS sample procedure when the SQL Module Language program
has been compiled with /FLOAT=IEEE_FLOAT:

3–44 SQL Module Language

procedure GET_FLOATS (
SQLCODE : out INTEGER;
P_FLOAT1 : out IEEE_SINGLE_FLOAT;
P_FLOAT2: out IEEE_DOUBLE_FLOAT
);

pragma INTERFACE (NONADA, GET_FLOATS);
SQLCODE : INTEGER;
FLOAT1 : SYSTEM.IEEE_SINGLE_FLOAT;
FLOAT2 : SYSTEM.IEEE_DOUBLE_FLOAT;
...
GET_FLOATS(SQLCODE, FLOAT1, FLOAT2);

BASIC provides a /REAL_SIZE qualifier which can be used to specify not only
the size but the format of floating point variables declared using the REAL
keyword. The relevant values for this qualifier for IEEE floating point formats
are SFLOAT and TFLOAT. These values specify that REAL variables are to
be of type S-Floating or T-Floating, respectively. BASIC also provides the
OPTION command which allows the size and format of a REAL to be specified
in a more local scope.

Additionally, BASIC has native datatypes (SFLOAT and TFLOAT) which
explicitly specify S-Floating and T-Floating variables, respectively.

The following example shows a BASIC code fragment which is compatible with
the GET_FLOATS sample procedure:

EXTERNAL GET_FLOATS(LONG, SFLOAT, TFLOAT)
DECLARE LONG SQLCODE
DECLARE SFLOAT FLOAT1
DECLARE TFLOAT FLOAT2
...
CALL GET_FLOATS(SQLCODE, FLOAT1, FLOAT2)

C has /FLOAT and /[NO]G_FLOAT qualifiers which work identically to those
for SQL$MOD (except the default may be different). That is, the format of the
floating point variables in the C program is determined by the qualifier. C has
native types of "float" and "double" which are 32-bit and 64-bit floating point
numbers, respectively. See Table 3–6 for more information on equivalency
between SQL and C data types.

The following example shows a C code fragment which is compatible with the
GET_FLOATS sample procedure provided that both the C module and the SQL
Module Language program were compiled with the same setting of the /FLOAT
or /[NO]G_FLOAT qualifier:

SQL Module Language 3–45

extern void GET_FLOATS (
long *SQLCODE,
float *P_FLOAT1,
double *P_FLOAT2

);
long SQLCODE;
float float1;
double float2;
...
GET_FLOATS(&SQLCODE, &float1, &float2);

COBOL has a /FLOAT qualifier with the same options as SQL$MOD (except
the default is D_FLOAT). There is no /[NO]G_FLOAT qualifer for COBOL. The
/FLOAT qualifier works identically to that of SQL$MOD. That is, the format
of the floating point variables in the COBOL program is determined by the
qualifier. COBOL has native types of COMP-1 and COMP-2 which are 32-bit
and 64-bit floating point numbers, respectively.

The following example shows a COBOL code fragment which is compatible
with the GET_FLOATS sample procedure provided that both the COBOL
program and the SQL Module Language program were compiled with the same
setting of the /FLOAT qualifier:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SQLCODE PIC S9(9) USAGE COMP.
01 FLOAT1 COMP-1.
01 FLOAT2 COMP-2.
...
CALL "GET_FLOATS" USING SQLCODE, FLOAT1, FLOAT2.

FORTRAN has /FLOAT and /[NO]G_FLOAT qualifiers which work identically
to those for SQL$MOD (except the default may be different). That is, the
format of the floating point variables in the FORTRAN program is determined
by the qualifier. FORTRAN has native types of "real" and "real*4" which are
32-bit floating point numbers and "double precision" and "real*8" which are
64-bit floating point numbers.

The following example shows a FORTRAN code fragment which is compatible
with the GET_FLOATS sample procedure provided that both the FORTRAN
module and the SQL Module Language program were compiled with the same
setting of the /FLOAT or /[NO]G_FLOAT qualifier:

integer*4 SQLCODE
real*4 float1
real*8 float2
. . .
CALL GET_FLOATS(SQLCODE, float1, float2)

3–46 SQL Module Language

Pascal has /FLOAT and /[NO]G_FLOAT qualifiers which work similarly to
those for SQL$MOD (except the default may be different). That is, the format
of floating point variables of certain data types in the Pascal program is
determined by the qualifier. The Pascal native data types affected by the
qualifiers are REAL, SINGLE and DOUBLE. The first two of these are 32-bit
floating point numbers and the final one is a 64-bit floating point number.
Pascal also has an Attribute called FLOAT which can be used to affect the
format of floating point similarly to the /FLOAT qualifier but with a more local
scope. Specifically, IEEE floating point format can be specified by using the
IEEE_FLOAT keyword with the FLOAT Attribute.

In addition, Pascal has several format-specific floating point data types which
specify a particular format regardless of the qualifier settings. The format-
specific data types include S_FLOAT and T_FLOAT which are IEEE 32-bit and
64-bit floating point numbers, respectively.

The following example shows a Pascal code fragment which is compatible with
the GET_FLOATS sample procedure when the SQL Module Language program
was compiled with /FLOAT=IEEE_FLOATING:

sqlcode : INTEGER;
float1 : S_FLOAT;
float2 : T_FLOAT:
PROCEDURE GET_FLOATS
(VAR SQLCODE : INTEGER;

VAR FLOAT_1 : S_FLOAT;
VAR FLOAT_2 : T_FLOAT);

EXTERNAL;
. . .
GET_FLOATS(sqlcode, float1, float2);

PL/I has /FLOAT and /[NO]G_FLOAT qualifiers which work identically to those
for SQL$MOD (except the default may be different). That is, the format of the
floating point variables in the PLI program is determined by the qualifier. PL/I
has a native type of FLOAT which can be a 32-bit and 64-bit floating point
number depending on the size specification.

The following example shows a PL/I code fragment which is compatible with
the GET_FLOATS sample procedure provided that both the PL/I module and
the SQL Module Language program were compiled with the same setting of
the /FLOAT or /[NO]G_FLOAT qualifier:

SQL Module Language 3–47

DECLARE GET_FLOATS EXTERNAL ENTRY (
ANY REFERENCE, ANY REFERENCE, ANY REFERENCE);

DECLARE SFLOAT FLOAT(24) BINARY,
TFLOAT FLOAT(53) BINARY,
SQLCODE BIN FIXED(31);

. . .
CALL GET_FLOATS(SQLCODE, SFLOAT, TFLOAT);

Note

Oracle Rdb always stores floating point numbers internally using
the VAX 32-bit and 64-bit types called F-Floating (F_FLOAT) and
G-Floating (G_FLOAT), respectively. This means that when IEEE
formats are used in a host language program, Oracle Rdb converts back
and forth between the VAX and IEEE formats. There are differences in
the number of available bits in the fraction and exponent between these
formats. Additionally, the IEEE formats have certain exponent values
reserved for infinity values. These differences can cause floating point
overflow or underflow as well as rounding errors during the conversion
process. See Appendix A of the Portable Mathematics Library in the
OpenVMS Operating System documentation for data on the maximum
and minimum values for VAX versus IEEE floating point formats.

3–48 SQL Module Language

3.5 Equivalent SQL and Host Language Data Types

The SQL data type specified for the formal parameter in a module must be
equivalent to the data type of the host language variable declaration for the
actual parameter. If the formal parameter and actual parameter are not
declared with equivalent data types, SQL can give unpredictable results. Refer
to Table 3–3 through Table 3–10 to determine equivalent data types for each
host language.

However, host languages typically do not support the same set of data types
that SQL supports. To work with a column in a database defined with a
data type not supported in a host language, the module must declare formal
parameters of a data type that the host language supports. SQL automatically
converts between the data type of the database column and the formal
parameter when it processes the SQL statement in a procedure.

The following fragments from a BASIC program and its accompanying SQL
module illustrate this technique. BASIC does not support a varying character
string (VARCHAR) data type but does have a STRING data type that is
equivalent to the SQL CHAR character string data type. The SQL module
declares a formal parameter as CHAR and uses that parameter to pass
values to and from a VARCHAR database column. SQL converts between the
VARCHAR data type of the column and the CHAR data type of the formal
parameter. The corresponding actual parameters in the BASIC calls to the
SQL module are declared as STRING, which are compatible with the CHAR
formal parameter.

Examples
Example 1: Inserting VARCHAR data with BASIC

.

.

.
! Program declares STRING variables for use as actual parameters for
! procedures. VC_FIELD will contain values to be passed to and from a
! VARCHAR field in a table.

DECLARE STRING EMPLOYEE_ID,VC_FIELD
.
.
.

! Call an SQL module procedure that creates a table with a VARCHAR column:

SQL Module Language 3–49

CALL CREATE_TABLE(sql_return_status)
IF sql_return_status < 0 THEN

CALL ROLLBACK_TRANSACTION(sql_return_status)
PRINT ’Error creating table. Exiting program.’
EXIT PROGRAM

END IF

! Call a procedure to insert a row into the table, using
! VC_FIELD to pass values to the VARCHAR column in the table.

employee_id = ’00550’
vc_field = ’Inserting employee 550 into the table’

CALL INSERT_VC(sql_return_status,employee_id,vc_field)
IF sql_return_status < 0 THEN

CALL ROLLBACK_TRANSACTION(sql_return_status)
PRINT ’Error inserting row. Exiting program.’
EXIT PROGRAM

END IF

Here is the corresponding SQL module fragment for that BASIC calling
program:

.

.

.

-- Procedure Section

-- This procedure creates the table with the VARCHAR column.

PROCEDURE CREATE_TABLE
SQLCODE;

CREATE TABLE VC_TABLE
(
EMPLOYEE_ID CHAR(5),
VC_FIELD VARCHAR(80)
);

-- This procedure inserts a row into the table. Note that the formal
-- parameter P_VC_FIELD is declared as CHAR to correspond with the actual
-- parameter, not as VARCHAR to correspond with its column in the table.

PROCEDURE INSERT_VC
SQLCODE
P_EMPLOYEE_ID CHAR(5)
P_VC_FIELD CHAR(80);

3–50 SQL Module Language

INSERT INTO VC_TABLE
VALUES

(
P_EMPLOYEE_ID,
P_VC_FIELD
);

.

.

.

An exception to this technique is required for SQL module procedures that need
to handle table columns defined as one of the date-time data type. Because
host languages do not support the date-time data types, calling programs that
need to work with a table column defined as a date-time data type require
special treatment.

Table 3–2 shows the OpenVMS data types that SQL requires for actual
parameters when you declare formal parameters for each SQL data type.

Table 3–2 SQL and Corresponding OpenVMS Data Types for Module
Language

Formal Parameter Data Type Requires Actual Parameter of OpenVMS Data Type

CHAR (n) Character string (DSC$K_DTYPE_T)
CHAR (n), qualified by
character set

Character string (DSC$K_DTYPE_T)

NCHAR (n) Character string (DSC$K_DTYPE_T)
VARCHAR (n) Varying character string (DSC$K_DTYPE_VT)1

VARCHAR (n), qualified
by character set

Varying character string (DSC$K_DTYPE_VT)1

NCHAR VARYING (n) Varying character string (DSC$K_DTYPE_VT) 1

LONG VARCHAR Varying character string (DSC$K_DTYPE_VT)1

TINYINT [(n)]2 Signed byte integer (DSC$K_DTYPE_B)
SMALLINT [(n)]2 Signed word integer (DSC$K_DTYPE_W)
INTEGER [(n)]2 Signed longword integer (DSC$K_DTYPE_L)

1Not supported in FORTRAN or BASIC; SQL generates a warning message.
2Scale factors not supported in C, FORTRAN, PL/I, Ada, Pascal, or BASIC; SQL generates a
warning message.

(continued on next page)

SQL Module Language 3–51

Table 3–2 (Cont.) SQL and Corresponding OpenVMS Data Types for Module
Language

Formal Parameter Data Type Requires Actual Parameter of OpenVMS Data Type

BIGINT [(n)] Signed quadword integer (DSC$K_DTYPE_
Q)1�4�5�9

QUADWORD [(n)] Signed quadword integer (DSC$K_DTYPE_
Q)1�4�5�9

DECIMAL [(n)[,(n)]] Packed decimal string (DSC$K_DTYPE_P)1�3

NUMERIC [(n)[,(n)]] Numeric string, left separate sign (DSC$K_
DTYPE_NL) 1�3�5

FLOAT [(n)] Single- or double-precision, floating-point number,
depending on n. For single-precision: DSC$K_
DTYPE_F or DSC$K_DTYPE_FS 6 and for
double-precision: DSCK_DTYPE_G, DSCK_
DTYPE_D, or DSC$K_DTYPE_FT. 7

REAL Single-precision, floating-point number (DSC$K_
DTYPE_F or DSC$K_DTYPE_FS). 6

DOUBLE PRECISION Double-precision, floating-point number (DSC$K_
DTYPE_G, DSC$K_DTYPE_D, or DSC$K_
DTYPE_FT). 7

(DATE) No equivalent OpenVMS data type; two-longword
array

DATE ANSI No equivalent OpenVMS data type; two-longword
array

DATE VMS Absolute date and time (DSC$K_DTYPE_ADT)
TIME No equivalent OpenVMS data type; two-longword

array

1Not supported in FORTRAN or BASIC; SQL generates a warning message.
3Not supported in C, Ada, or Pascal; SQL generates a warning message.
4Not supported in PL/I; SQL generates a warning message.
5Not supported in BASIC; SQL generates a warning message.
6The floating point representation of single-precision numbers is determined by the value of the
/FLOAT qualifier on the SQL module processor command line. For IEEE_FLOAT it is DSC$K_
DTYPE_FS and for G_FLOAT or D_FLOAT it is DSC$K_DTYPE_F.
7The floating point representation of double-precision numbers is determine the setting of the
/FLOAT qualifier on the SQL module processor command line. For IEEE_FLOAT it is DSC$K_
DTYPE_FS; for G_FLOAT, DSC$K_DTYPE_G; and for D_FLOAT, DSC$K_DTYPE_D.
9Not supported by Ada; SQL generates a warning.

(continued on next page)

3–52 SQL Module Language

Table 3–2 (Cont.) SQL and Corresponding OpenVMS Data Types for Module
Language

Formal Parameter Data Type Requires Actual Parameter of OpenVMS Data Type

TIMESTAMP No equivalent OpenVMS data type; two-longword
array

INTERVAL (Year-month) No equivalent OpenVMS data type; two-longword
array

INTERVAL (Day-time) No equivalent OpenVMS data type; two-longword
array

LIST OF BYTE VARYING Not supported8

8Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using an 8-byte character string or a quadword. To retrieve the values of individual elements of
the list, use host language variables of data type CHAR or VARCHAR.

The following tables show samples for each SQL formal parameter data type
and the specific host language declaration SQL accepts for the corresponding
actual parameter.

Table 3–3 shows the Ada declarations for SQL formal parameters. Refer to the
Usage Note at the end of this section for information about the Ada packages
available for the SQL module language. The SQL_STANDARD Ada package
defines the data types that are supported by the ANSI/ISO SQL standard.

SQL Module Language 3–53

Table 3–3 Ada Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Ada Parameter Declaration2

CHAR (10) STR1 : string(1..10);
CHAR (10) CHARACTER
SET KANJI

STR1 : string(1..20);1

NCHAR (10) STR1 : string(1..10);1

VARCHAR (80) type VARCHAR_80 is
record
VAR_LEN : short_integer;
VAR_TEXT : array (1..80) of character;
end record;

STR2 : varchar_80;
VARCHAR (80)
CHARACTER SET KANJI

type VARCHAR_160 is
record
VAR_LEN : short_integer;
VAR_TEXT : array (1..160) of character;
end record;

STR2 : varchar_160;1

NCHAR VARYING (80) type VARCHAR_80 is
record
VAR_LEN : short_integer;
VAR_TEXT : array (1..80) of character;
end record;

STR2 : varchar_80;1

LONG VARCHAR type VARCHAR_16383 is
record
VAR_LEN : short_integer;
VAR_TEXT : array (1..16383) of character;
end record;

STR3 : varchar_16383;

1See Section 3.3 for information about character length and module language.
2Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–54 SQL Module Language

Table 3–3 (Cont.) Ada Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Ada Parameter Declaration2

TINYINT (2)
TINYINT

Not supported3

NUM1 : short_short_integer;4

SMALLINT
SMALLINT

Not supported3

NUM1 : short_integer;
INTEGER (2)
INTEGER

Not supported3

NUM2 : integer;
BIGINT (2)
BIGINT

Not supported3

Not supported3

DECIMAL (2)
DECIMAL

Not supported3

Not supported3

NUMERIC (2)
NUMERIC

Not supported3

Not supported3

FLOAT (6)
FLOAT (25)

See Table 3–4.
See Table 3–4.

REAL See Table 3–4.
DOUBLE PRECISION See Table 3–4.
DATE Depends on the interpretation of DATE5

DATE ANSI No OpenVMS equivalent6

DATE VMS type SQL_DATE_VMS is
record
10 : integer;
11 : integer;
end record;

TIME No OpenVMS equivalent6

2Assume the default and national character sets of the session are DEC_MCS.
3Ada does not support quadword, scaled integer, decimal, or numeric data types. To retrieve
columns defined with those data types from a database, declare formal parameters with a data
type that is supported in Ada and refer to those formal parameters in SQL module procedure
statements. SQL will convert the data in the columns to the data type of the formal parameter.
4This is a DEC Ada extension.
5SQL interprets the unqualified DATE data type as DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
6Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.

(continued on next page)

SQL Module Language 3–55

Table 3–3 (Cont.) Ada Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Ada Parameter Declaration2

TIMESTAMP No OpenVMS equivalent6

INTERVAL DAY TO
SECOND

No OpenVMS equivalent6�7

LIST OF BYTE VARYING Not an OpenVMS supported formal parameter
data type8

2Assume the default and national character sets of the session are DEC_MCS.
6Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
7The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
8Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using an 8-byte character string. To retrieve the values of individual elements of the list, use host
language variables of data type CHAR or VARCHAR.

Table 3–4 shows the Ada declarations and floating point formats.

3–56 SQL Module Language

Table 3–4 Ada Declarations and Floating Point Formats

Ada Declaration Compatible SQL$MOD Declaration

pragma FLOAT_REPRESENTATION VAX_FLOAT

...

FLOAT1 : STANDARD.FLOAT;

SQLMOD/FLOAT=G_FLOAT - or
SQLMOD/FLOAT=D_FLOAT
...
REAL :P_FLOAT1 - or -
FLOAT(24) :P_FLOAT1

pragma FLOAT_REPRESENTATION VAX_FLOAT
pragma LONG_FLOAT G_FLOAT
...

FLOAT1 : STANDARD.LONG_FLOAT;

SQLMOD/FLOAT=G_FLOAT
...

DOUBLE_PRECISION :P_FLOAT1 - or -
FLOAT(53) :P_FLOAT1

pragma FLOAT_REPRESENTATION VAX_FLOAT
pragma LONG_FLOAT D_FLOAT
...

FLOAT2 : STANDARD.LONG_FLOAT;

SQLMOD/FLOAT=D_FLOAT
...

DOUBLE_PRECISION :P_FLOAT2 - or -
FLOAT(53) :P_FLOAT2

...
FLOAT1 : SYSTEM.F_FLOAT;

FLOAT2 : SYSTEM.D_FLOAT;

SQLMOD/FLOAT=D_FLOAT
...
REAL :P_FLOAT1 - or -
FLOAT(24) :P_FLOAT1
DOUBLE_PRECISION :P_FLOAT2 - or -
FLOAT(53) :P_FLOAT2

(continued on next page)

SQL Module Language 3–57

Table 3–4 (Cont.) Ada Declarations and Floating Point Formats

Ada Declaration Compatible SQL$MOD Declaration

...
FLOAT1 : SYSTEM.F_FLOAT;

FLOAT2 : SYSTEM.G_FLOAT;

SQLMOD/FLOAT=G_FLOAT
...
REAL :P_FLOAT1 - or -
FLOAT(24) :P_FLOAT1
DOUBLE_PRECISION :P_FLOAT2 - or -
FLOAT(53) :P_FLOAT2

...
FLOAT1 : SYSTEM.IEEE_SINGLE_FLOAT;

FLOAT2 : SYSTEM.IEEE_DOUBLE_FLOAT;

SQLMOD/FLOAT=IEEE_FLOAT
...
REAL :P_FLOAT1 - or -
FLOAT(24) :P_FLOAT1
DOUBLE_PRECISION :P_FLOAT2 - or -
FLOAT(53) :P_FLOAT2

Table 3–5 shows the BASIC declarations for SQL formal parameters.

3–58 SQL Module Language

Table 3–5 BASIC Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible BASIC Parameter Declaration11

CHAR (10) DECLARE STRING STR11

CHAR (10) CHARACTER
SET KANJI

DECLARE STRING STR11�10

NCHAR (10) DECLARE STRING STR11�10

VARCHAR (80) Not supported2

VARCHAR (80)
CHARACTER SET KANJI

Not supported2

NCHAR VARYING (80) Not supported2

LONG VARCHAR Not supported2

TINYINT (2)
TINYINT

Not supported2

DECLARE BYTE
SMALLINT (2)
SMALLINT

Not supported2

DECLARE WORD NUM1
INTEGER (2)
INTEGER

Not supported2

DECLARE LONG NUM2
BIGINT (2)
BIGINT

Not supported2

DECLARE QUAD NUM3
DECIMAL(9)
DECIMAL(18)
DECIMAL(18,2)

DECLARE DECIMAL (9, 0) NUM7
DECLARE DECIMAL (18, 0) NUM7
DECLARE DECIMAL (18, 2) NUM7

NUMERIC(2)
NUMERIC

Not supported2

Not supported2

1The BASIC dynamic string data type does not accept an argument for the length of the character
string. BASIC passes STRING data by descriptor. For STRING data, SQL ignores the length
argument of CHAR formal parameters and uses the descriptor to read (for input) or set (for output)
the length of the string.
2BASIC does not support varying character, scaled integer, or numeric data types. To retrieve
columns defined with those data types from a database, declare formal parameters with a data
type that is supported in BASIC and refer to those formal parameters in SQL module procedure
statements. SQL will convert the data in the columns to the data type of the formal parameter.
10See Section 3.3 for information about character length and module language.
11Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

SQL Module Language 3–59

Table 3–5 (Cont.) BASIC Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible BASIC Parameter Declaration11

FLOAT (6) DECLARE SINGLE NUM4 3

DECLARE SFLOAT NUM4 4

FLOAT (25) DECLARE DOUBLE NUM4 3

DECLARE TFLOAT NUM4 4

DECLARE DFLOAT NUM4 5

REAL DECLARE SINGLE NUM43

DECLARE SFLOAT NUM4 4

DOUBLE PRECISION DECLARE DOUBLE NUM43

DECLARE TFLOAT NUM4 4

DECLARE DFLOAT NUM4 5

DATE Depends on the interpretation of DATE4

DECLARE DATE_REC START_DATE, END_
DATE

DATE VMS RECORD DATE_REC
STRING DATE_STRING=8

END RECORD DATE_REC
DATE ANSI No OpenVMS equivalent7

DECLARE DATE_REC START_DATE, END_
DATE

TIME No OpenVMS equivalent7

DECLARE TIME_REC START_TIME, END_
TIME

TIMESTAMP No OpenVMS equivalent7

DECLARE TIMESTAMP_REC START_
TIMESTAMP, END_TIMESTAMP

3If /FLOAT=G_FLOAT is specified on the SQL module processor command line.
4If /FLOAT=IEEE_FLOAT is specified on the SQL module processor command line.
5If /FLOAT=D_FLOAT is specified on the SQL module processor command line.
7Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
11Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–60 SQL Module Language

Table 3–5 (Cont.) BASIC Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible BASIC Parameter Declaration11

INTERVAL DAY TO
SECOND

No OpenVMS equivalent7�8

DECLARE INTERVAL_REC START_INTERVAL,
END_INTERVAL7

LIST OF BYTE VARYING Not supported9

7Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
8The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
9Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using an 8-byte character string. To retrieve the values of individual elements of the list, use host
language variables of data type CHAR.
11Assume the default and national character sets of the session are DEC_MCS.

Table 3–6 shows the C declarations for SQL formal parameters.

Table 3–6 C Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data Type Compatible C Parameter Declaration10

CHAR (10) char str1[11]1�11

CHAR (10) CHARACTER SET
KANJI

char str1[21] 1�8�11

NCHAR (10) char str1[11] 1�8�11

1SQL expects character strings to be in ASCIZ format. You therefore declare a CHAR host
language variable for a CHAR column to be 1 character more than the column size. (This allows
space for the null character that terminates ASCIZ strings.) You can avoid this restriction when
you copy definitions from the data dictionary by specifying a character interpretation option in the
record-type clause of your parameter declaration.
8See Section 3.3 for information about character length and module language.
10Assume the default and national character sets of the session are DEC_MCS.
11When SQL converts data from a table column to a formal parameter, it fills any extra space in
the parameter with blanks. It inserts the null character after the last character or blank-filled
space passed from the column to terminate the ASCIZ string.

(continued on next page)

SQL Module Language 3–61

Table 3–6 (Cont.) C Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data Type Compatible C Parameter Declaration10

VARCHAR (80) Dialect dependent9�11

VARCHAR (80)
CHARACTER SET KANJI

Dialect dependent9�11

NCHAR VARYING (80) Dialect dependent2�8�9�11

LONG VARCHAR Dialect dependent 2�8�11

TINYINT (2)
TINYINT

Not supported2

char x
SMALLINT (2)
SMALLINT

Not supported2

short num1
INTEGER (2)
INTEGER

Not supported2

int num2
BIGINT (2)
BIGINT

not supported2

_ _int64
DECIMAL (2)
DECIMAL

Not supported2

Not supported2

NUMERIC (2)
NUMERIC

Not supported2

Not supported2

FLOAT (6)
FLOAT (25)

float num43

double num43

2C does not support varying character, scaled integer, decimal, or numeric data types. To retrieve
columns defined with those data types from a database, declare formal parameters with a data type
that is supported in C and refer to those formal parameters in SQL module procedure statements.
SQL will convert the data in the columns to the data type of the formal parameter.
3The/FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match that
for C compiling.
8See Section 3.3 for information about character length and module language.
9Although C does not support varying character data types, if you specify DIALECT SQL92
and C language, you can declare formal parameters as VARCHAR, NCHAR VARYING, and LONG
VARCHAR. SQL passes the parameters as ASCIZ (null-terminated string). If you specify DIALECT
SQLV40 or SQL89, SQL passes the parameters as ASCIW (word length prefixed) and returns a
deprecated feature message. If you specify DIALECT MIA, SQL passes the parameters as ASCIW
but does not issue a deprecated feature message because MIA dictates that these parameters are
passed this way. If you do not specify a dialect, SQL passes the parameters as ASCIW (word length
prefixed) and returns a deprecated feature message.
10Assume the default and national character sets of the session are DEC_MCS.
11When SQL converts data from a table column to a formal parameter, it fills any extra space in
the parameter with blanks. It inserts the null character after the last character or blank-filled
space passed from the column to terminate the ASCIZ string.

(continued on next page)

3–62 SQL Module Language

Table 3–6 (Cont.) C Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data Type Compatible C Parameter Declaration10

REAL float num53

DOUBLE PRECISION double num63

DATE Depends on the interpretation of DATE4

DATE ANSI No OpenVMS equivalent5

DATE VMS struct
{

int 10;
int 11;

}sql_date_vms;
TIME No OpenVMS equivalent5

TIMESTAMP No OpenVMS equivalent5

INTERVAL DAY TO SECOND No OpenVMS equivalent5�6

LIST OF BYTE VARYING Not supported7

3The/FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match that
for C compiling.
4SQL interprets the unqualified DATE data type as DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
5Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
6The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
7Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using an 8-byte character string. To retrieve the values of individual elements of the list, use host
language variables of data type CHAR.
10Assume the default and national character sets of the session are DEC_MCS.

Table 3–7 shows the COBOL declarations for SQL formal parameters.

SQL Module Language 3–63

Table 3–7 COBOL Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible COBOL Parameter Declaration7

CHAR (10) 01 STR1 PICTURE X(10).
CHAR (10) CHARACTER
SET KANJI

01 STR1 PICTURE X(20).6

NCHAR (10) 01 STR1 PICTURE X(10).6

VARCHAR (80)

01 STR2.
49 STR2L PICTURE S9(4) COMP.
49 STR2C PICTURE X(80).

VARCHAR (80)
CHARACTER SET KANJI

01 STR2 CHARACTER SET KANJI.
49 STR2L PICTURE S9(4) COMP.
49 STR2C PICTURE X(160).6

NCHAR VARYING (80)

01 STR2.
49 STR2L PICTURE S9(4) COMP.
49 STR2C PICTURE X(80).6

LONG VARCHAR

01 STR3.
49 STR3L PICTURE S9(4) COMP.
49 STR3C PICTURE X(16383).

SMALLINT (2)
SMALLINT

01 NUM1 PICTURE S99V99 COMP.
01 NUM1 PICTURE S9(4) COMP.

INTEGER (2)
INTEGER

01 NUM2 PICTURE S9(7)V99 COMP.
01 NUM2 PICTURE S9(9) COMP.

BIGINT (2)
BIGINT

01 NUM3 PIC S9(16)V99 COMP.
01 NUM3 PIC S9(18) COMP.

DECIMAL(18,2)
DECIMAL(18)

01 NUM4 PIC S9(16)V99 COMP3.
01 NUM4 PIC S9(18) COMP3.

6See Section 3.3 for information about character length and module language.
7Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–64 SQL Module Language

Table 3–7 (Cont.) COBOL Declarations for SQL Formal Parameter Data
Types

SQL Formal Parameter Data
Type Compatible COBOL Parameter Declaration7

NUMERIC(18,2)
NUMERIC(18)

01 NUM5 PIC S9(16)V99 SIGN LEADING
SEPARATE.
01 NUM5 PIC S9(18) SIGN LEADING
SEPARATE.

FLOAT (6)
FLOAT (25)

01 NUM6 COMP-1.1

01 NUM6 COMP-2.1

REAL 01 NUM7 COMP-1. 1

DOUBLE PRECISION 01 NUM8 COMP-2.1

DATE Depends on the interpretation of DATE2

DATE ANSI No OpenVMS equivalent3

DATE VMS

type SQL_DATE_VMS is
record
10 : integer;
11 : integer;
end record;

TIME No OpenVMS equivalent3

TIMESTAMP No OpenVMS equivalent3

INTERVAL DAY TO
SECOND

No OpenVMS equivalent3�4

LIST OF BYTE VARYING Not supported5

1The /FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match
that for COBOL compiling.
2SQL interprets the unqualified DATE data type as DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
3Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
4The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
5Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using a quadword or an 8-byte character string. To retrieve the values of individual elements of
the list, use host language variables of data type CHAR or VARCHAR.
7Assume the default and national character sets of the session are DEC_MCS.

SQL Module Language 3–65

Table 3–8 shows the FORTRAN declarations for SQL formal parameters.

Table 3–8 FORTRAN Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible FORTRAN Parameter Declaration9

CHAR (10) CHARACTER*10 STR1
CHAR (10) CHARACTER
SET KANJI

CHARACTER*20 STR18

NCHAR (10) CHARACTER*10 STR18

VARCHAR (80) Not supported1

VARCHAR (80)
CHARACTER SET KANJI

Not supported1

NCHAR VARYING (80) Not supported1

LONG VARCHAR Not supported1

TINYINT (2)
TINYINT

Not supported1

LOGICAL*12

SMALLINT (2)
SMALLINT

Not supported1

INTEGER*2 NUM1
INTEGER (2)
INTEGER

Not supported1

INTEGER*4 NUM2
BIGINT (2)
BIGINT

Not supported1

Not supported1

DECIMAL(18,2)
DECIMAL(18)

Not supported1

Not supported1

NUMERIC(18,2)
NUMERIC(18)

Not supported1

Not supported1

1FORTRAN does not support varying character, scaled integer, or numeric data types. To retrieve
columns defined with those data types from a database, declare formal parameters with a data type
that is supported in FORTRAN and refer to those formal parameters in SQL module procedure
statements. SQL will convert the data in the columns to the data type of the formal parameter.
2In FORTRAN, BYTE is a synonym for LOGICAL*1 and is parsed by the SQL interface for Oracle
Rdb.
8See Section 3.3 for information about character length and module language.
9Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–66 SQL Module Language

Table 3–8 (Cont.) FORTRAN Declarations for SQL Formal Parameter Data
Types

SQL Formal Parameter Data
Type Compatible FORTRAN Parameter Declaration9

FLOAT (6)
FLOAT (25)

REAL*4 NUM43

DOUBLE PRECISION NUM43

REAL REAL*4 NUM53

DOUBLE PRECISION DOUBLE PRECISION NUM63

DATE Depends on the interpretation of DATE4

DATE ANSI No OpenVMS equivalent5

DATE VMS STRUCTURE /SQL_DATE_VMS/
INTEGER*4 L0
INTEGER*4 L1

END STRUCTURE
TIME No OpenVMS equivalent5

TIMESTAMP No OpenVMS equivalent5

INTERVAL DAY TO
SECOND

No OpenVMS equivalent5�6

LIST OF BYTE VARYING Not supported7

3The /FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match
that for FORTRAN compiling.
4SQL interprets the unqualified DATE data type as DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
5Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
6The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
7Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string (list) identifier, a pointer to the first element of the
list, using an 8-byte character string. To retrieve the values of individual elements of the list, use
host language variables of data type CHAR.
9Assume the default and national character sets of the session are DEC_MCS.

Table 3–9 shows the Pascal declarations for SQL formal parameters.

SQL Module Language 3–67

Table 3–9 Pascal Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Pascal Parameter Declaration11

CHAR (10) VAR STR1 : PACKED ARRAY [1..10] OF CHAR;
CHAR (10) CHARACTER
SET KANJI

VAR STR1 : PACKED ARRAY [1..20] OF
CHAR;10

NCHAR (10) VAR STR1 : PACKED ARRAY [1..10] OF
CHAR;10

VARCHAR (80) VAR STR2 : VARYING [80] OF CHAR;
VARCHAR (80)
CHARACTER SET KANJI

VAR STR2 : VARYING [160] OF CHAR;10

NCHAR VARYING (80) VAR STR2 : VARYING [80] OF CHAR;10

LONG VARCHAR VAR STR3 : VARYING [16383] OF CHAR;
TINYINT (2)
TINYINT

Not supported1

VAR NUM1 : [BYTE] –128..127;
SMALLINT (2)
SMALLINT

Not supported1

VAR NUM1 : [WORD] –32768..32767;
INTEGER (2)
INTEGER

Not supported1

VAR NUM2 : [LONG] –MAXINT..+MAXINT;
BIGINT (2)
BIGINT

Not supported1

Not supported1

DECIMAL(18,2)
DECIMAL(18)

Not supported1

Not supported1

NUMERIC(18,2)
NUMERIC(18)

Not supported1

Not supported1

1Pascal does not support packed decimal, numeric, or scaled integer data types. To retrieve
columns defined with those data types from a database, declare formal parameters with a data
type that is supported in Pascal and refer to those formal parameters in SQL module procedure
statements. SQL will convert the data in the columns to the data type of the formal parameter.
10See Section 3.3 for information about character length and module language.
11Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–68 SQL Module Language

Table 3–9 (Cont.) Pascal Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Pascal Parameter Declaration11

FLOAT (6) VAR NUM4 : SINGLE 2

VAR NUM4 : F_FLOAT 3�4

VAR NUM4 : S_FLOAT 5

FLOAT (25) VAR NUM4 : DOUBLE 2

VAR NUM4 : G_FLOAT 3

VAR NUM4 : D_FLOAT 4

VAR NUM4 : T_FLOAT 5

REAL VAR NUM4 : SINGLE 2

VAR NUM4: F_FLOAT 3�4

VAR NUM4: S_FLOAT 5

DOUBLE PRECISION VAR NUM4 : DOUBLE 2

VAR NUM4 : G_FLOAT 3

VAR NUM4 : D_FLOAT 4

VAR NUM4 : T_FLOAT 5

DATE Depends on the interpretation of DATE6

DATE ANSI No OpenVMS equivalent7

DATE VMS SQL_DATE_VMS = RECORD
L0 : INTEGER;
L1 : INTEGER;

END;
TIME No OpenVMS equivalent7

TIMESTAMP No OpenVMS equivalent7

INTERVAL DAY TO
SECOND

No OpenVMS equivalent7�8

2If The /FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match
that for Pascal compiling.
3If /FLOAT=G_FLOAT is specified on the SQL module processor command line.
4If /FLOAT=D_FLOAT is specified on the SQL module processor command line.
5If /FLOAT=IEEE_FLOAT is specified on the SQL module processor command line.
6SQL interprets the unqualified DATE data type as DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
7Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
8The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
11Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

SQL Module Language 3–69

Table 3–9 (Cont.) Pascal Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible Pascal Parameter Declaration11

LIST OF BYTE VARYING Not supported9
9Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string identifier, a pointer to the first element of the list,
using an 8-byte character string. To retrieve the values of individual elements of the list, use host
language variables of data type CHAR or VARCHAR.
11Assume the default and national character sets of the session are DEC_MCS.

Table 3–10 shows the PL/I declarations for SQL formal parameters.

Table 3–10 PL/I Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible PL/I Parameter Declaration9

CHAR (10) DCL STR1 CHAR(10);
CHAR (10) CHARACTER
SET KANJI

DCL STR1 CHAR(20);8

NCHAR (10) DCL STR1 CHAR(10);8

VARCHAR (80) DCL STR2 CHAR(80) VAR;
VARCHAR (80)
CHARACTER SET KANJI

DCL STR2 CHAR(160) VAR;8

NCHAR VARYING (80) DCL STR2 CHAR(80) VAR;8

LONG VARCHAR DCL STR3 CHAR(16383) VAR;
TINYINT (2)
TINYINT

Not supported1

FIXED BINARY(7);
SMALLINT (2)
SMALLINT

Not supported1

DCL NUM1 BIN FIXED(15);
INTEGER (2)
INTEGER

Not supported1

DCL NUM2 BIN FIXED(31);

1PL/I does not support scaled integer or BIGINT data types. To retrieve columns defined with
those data types from a database, declare formal parameters with a data type that is supported in
PL/I and refer to those formal parameters in SQL module procedure statements. SQL will convert
the data in the columns to the data type of the formal parameter.
8See Section 3.3 for information about character length and module language.
9Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

3–70 SQL Module Language

Table 3–10 (Cont.) PL/I Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible PL/I Parameter Declaration9

BIGINT (2)
BIGINT

Not supported1

Not supported1

DECIMAL(4)
DECIMAL(18,2)

DCL NUM3 FIXED(4) DEC;
DCL NUM3 FIXED(18,2) DEC;

NUMERIC(2)
NUMERIC(18,2)

DCL NUM4 PIC ’S(4)9’;2

DCL NUM4 PIC ’S(16)9V99’;2

FLOAT (6)
FLOAT (25)

DCL NUM5 BIN FLOAT(24);3

DCL NUM5 BIN FLOAT(53);3

REAL DCL NUM5 BIN FLOAT(24);3

DOUBLE PRECISION DCL NUM5 BIN FLOAT(53);3

DATE Depends on the interpretation of DATE4

DATE ANSI No OpenVMS equivalent5

DATE VMS DECLARE 1 SQL_DATE_VMS,
2 L0 BIN FIXED(31);
2 L1 BIN FIXED(31);

TIME No OpenVMS equivalent5

TIMESTAMP No OpenVMS equivalent5

INTERVAL DAY TO
SECOND

No OpenVMS equivalent5�6

1PL/I does not support scaled integer or BIGINT data types. To retrieve columns defined with
those data types from a database, declare formal parameters with a data type that is supported in
PL/I and refer to those formal parameters in SQL module procedure statements. SQL will convert
the data in the columns to the data type of the formal parameter.
2Do not pass the data type by descriptor.
3The /FLOAT or /[NO]G_FLOAT qualifier on SQL module processor command line must match
that for PL/I compiling.
4SQL interprets the unqualified DATE data type as a DATE VMS by default unless you change the
definition environment by specifying DEFAULT DATE FORMAT SQL92 in the SQL module file.
5Except for DATE VMS, the length and format of the date-time data types are reserved for use by
Oracle Rdb. Use the data types shown in Table 4–2 in host programs.
6The INTERVAL data type has 12 other qualifier combinations listed in Table 2–9.
9Assume the default and national character sets of the session are DEC_MCS.

(continued on next page)

SQL Module Language 3–71

Table 3–10 (Cont.) PL/I Declarations for SQL Formal Parameter Data Types

SQL Formal Parameter Data
Type Compatible PL/I Parameter Declaration9

LIST OF BYTE VARYING Not supported7
7Module language does not support LIST OF BYTE VARYING as a formal parameter data type.
However, you can retrieve the segmented string (list) identifier, a pointer to the first element of the
list, using an 8-byte character string. To retrieve the values of individual elements of the list, use
host language variables of data type CHAR or VARCHAR.
9Assume the default and national character sets of the session are DEC_MCS.

Usage Note

The SQL module language provides support for three Ada packages:

• SQL_STANDARD

• SQL_SQLCODE

• SQL_SQLCA

The SQL_SQLCA package defines the SQLCA structure, and the SQL_
SQLCODE package contains the literal definitions for the SQLCODE values.

Note

Ada literals can contain only ASCII characters.

SQL lets you declare host language variables either directly or by calling the
SQL_STANDARD Ada package.

You must use the SQL_STANDARD Ada package if you want to conform
to the ANSI/ISO SQL standard. This package defines the data types that
are supported by the ANSI standard. To use the package, first copy the file
SYS$LIBRARY:SQL$STANDARD.ADA to your own Ada library, then compile
the package.

The package SQL_STANDARD declares the following ANSI-standard data
types:

• CHAR

• SMALLINT

• INT

3–72 SQL Module Language

• REAL

• DOUBLE_PRECISION

• SQLCODE_TYPE

The data type SQLCODE_TYPE contains three subtypes: NOT_FOUND,
INDICATOR_TYPE, and SQL_ERROR.

When you compile an SQL module using Ada as the source language,
Oracle Rdb generates an Ada package that contains Ada declarations for
all procedures in the SQL module. Part of that declaration for each routine is
the declaration of each parameter. These parameters will be declared using
data types in the SQL_STANDARD package.

You must use the Ada WITH clause in your host language program to take
advantage of this generated package. This generated package has the same
name as your SQL module.

To take advantage of this generated package, be sure to compile your SQL
module before compiling your host language program. When using ACS LINK,
first specify the Ada source program object file, then the object file created
by the SQL module, and then any other libraries you might need, such as
SQL$USER.

Examples

Example 1: Compiling an SQL module file using the generated Ada package

MODULE MY_MODULE !
LANGUAGE ADA
AUTHORIZATION RDB$DBHANDLE

DECLARE ONE SCHEMA FILENAME personnel_one
DECLARE TWO SCHEMA FILENAME personnel_two

.

.

.
PROCEDURE COUNT

SQLCODE
THE_COUNT INT;

SELECT COUNT(DISTINCT EMPLOYEE_ID)
INTO THE_COUNT
FROM ONE.EMPLOYEES;

! Note the SQL module name.

SQL Module Language 3–73

Example 2: Showing the object file generated by the SQL module language
compiler in Example 1

.

.

.
--Source file is USER1:[ADA]MY_MODULE.SQLMOD;1
WITH SQL_STANDARD; !
WITH SYSTEM;
Package MY_MODULE is "

PROCEDURE COUNT (
P1 : in out SQL_STANDARD.SQLCODE_TYPE; #
P2 : in out SQL_STANDARD.INT $

);

pragma INTERFACE (NONADA, COUNT);

End MY_MODULE;

! The SQL_STANDARD Ada package is being called.

" The SQL module name is specified.

Using SQLCODE_TYPE data type from SQL_STANDARD.

$ Using INT data type from SQL_STANDARD package.

3–74 SQL Module Language

3.6 SQL Module Language Processor Command Line

You can define a symbol to make invoking the SQL module processor easier.
For example:

$ SQLMOD == "SQLMOD"

You then can invoke the SQL module processor with or without a module file
specification:

• If you invoke the SQL module processor without a module file specification,
the module processor prompts you for it. For example:

$ SQLMOD
INPUT FILE> module-file-specification

• If you invoke the SQL module processor with a module file specification
as part of the DCL command line, SQL starts processing your module file
immediately after you press the Return key. For example:

$ SQLMOD module-file-specification

Either way, there are several qualifiers you can specify with the file
specification that control how SQL processes the module file. The syntax
diagram shows the format for those qualifiers.

Format

module-file-spec-qual =

SQLMOD module-file-spec
<context-file-name>
module-qualifiers-1
module-qualifiers-2

SQL Module Language 3–75

module-qualifiers-1 =

no-qualifiers-1
no-qualifiers-2

/ARCHITECTURE = architecture_options
/C_STRING = c-string-options
/CONSTRAINT_MODE = IMMEDIATE

DEFERRED
OFF
ON

/CONTEXT = NONE
ALL
procedure-list

/FLOAT = D_FLOAT
G_FLOAT
IEEE_FLOAT

/USER_DEFAULT = <username>
/PASSWORD_DEFAULT = <password>

no-qualifiers-1 =

/ ALIGN_RECORDS
NO C_PROTOTYPES

= <file-name>
CONNECT
EXTERNAL_GLOBALS
FLAG_NONSTANDARD

= MIA
= SQL89
= SQL92_ENTRY

G_FLOAT
INITIALIZE_HANDLES
LIST

= <file-spec>
LOWERCASE_PROCEDURE_NAMES
MACHINE_CODE

3–76 SQL Module Language

no-qualifiers-2 =

/ OBJECT
NO = <file-spec>

PACKAGE_COMPILATION
PARAMETER_CHECK
PRAGMA = (IDENT = string-literal)
PROTOTYPES

= <prototypesfile>
QUERY_ESTIMATES
QUIET_COMMIT
TRANSACTION_DEFAULT

= IMPLICIT
= DISTRIBUTED

WARN
= (warning-option)

,

warning-option =

WARNING
NOWARNING
DEPRECATE
NODEPRECATE

,

architecture_options =

GENERIC
HOST
EV4
EV5
EV56
PCA56
EV6
EV67
EV68
EV7

SQL Module Language 3–77

c-string-options =

BLANK_FILL
NO

FIXED_CDD_STRINGS
NO

(BLANK_FILL , FIXED_CDD_STRINGS)
NO NO

module-qualifiers-2 =

/database-options
/optimization_options
/QUERY_TIME_LIMIT = <total-seconds>
/QUERY_MAX_ROWS = <total-rows>
/QUERY_CPU_TIME_LIMIT = <total-seconds>
/ROLLBACK_ON_EXIT

optimization-options=

OPTIMIZATION_LEVEL= DEFAULT
(AGGRESSIVE_SELECTIVITY)

FAST_FIRST
SAMPLED_SELECTIVITY
TOTAL_TIME

,

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA=V1
VIDA=V2
VIDA=V2N
NOVIDA
DBIV1
DBIV31
DBIV70

3–78 SQL Module Language

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070
RDB071

procedure-list =

(<procedure>)
: <entry-name>

,

Arguments

ALIGN_RECORDS
NOALIGN_RECORDS
Aligns the fields in an SQL module procedure record parameter.

If your host language is C, the default is ALIGN_RECORDS; otherwise, the
default is NOALIGN_RECORDS.

ARCHITECTURE=architecture_options
For improved performance of generated code, the ARCHITECTURE command
line qualifier can be used on OpenVMS Alpha systems. The ARCHITECTURE
qualifier is ignored on Itanium systems.

The ARCHITECTURE qualifier specifies the lowest version of the Alpha
architecture where this code will run. This allows the compiler to generate
more efficient code, with the tradeoff that code may not run on older systems.

All Alpha processors implement a core set of instructions and, in some cases,
the following extensions:

• Byte/word extension (BWX) - The instructions that comprise the BWX
extension are LDBU, LDWU, SEXTB, SEXTW, STB, and STW.

SQL Module Language 3–79

• Square-root and floating-point convert extension (FIX) - The instructions
that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOFS, ITOFT,
SQRTF, SQRTG, SQRTS, and SQRTT.

• Count extension (CIX) - The instructions that comprise the CIX extension
are CTLZ, CTPOP, and CTTZ.

• Multimedia extension (MVI) - The instructions that comprise the MVI
extension are MAXSB8, MAXSW4, MAXUB8, MAXUW4, MINSB8,
MINSW4, MINUB8, MINUW4, PERR, PKLB, PKWB, UNPKBL, and
UNPKBW.

The Alpha Architecture Reference Manual describes the extensions in detail.

The keyword specified with the ARCHITECTURE qualifier determines which
instructions the compiler can generate and which coding rules it must follow.

• GENERIC - Generate instructions that are appropriate for all Alpha
processors. This option is the default and is equivalent to /ARCH=EV4.

• HOST - Generate instructions for the processor that the compiler is
running on (for example, EV56 instructions on an EV56 processor, EV7
instructions on an EV7 processor, and so on).

• EV4 - Generate instructions for the EV4 processor (21064, 20164A, 21066,
and 21068 chips). Applications compiled with this option will not incur any
emulation overhead on any Alpha processor.

• EV5 - Generate instructions for the EV5 processor (some 21164 chips).
(Note that the EV5 and EV56 processors both have the same chip number -
21164.) Applications compiled with this option will not incur any emulation
overhead on any Alpha processor.

• EV56 - Generate instructions for EV56 processors (some 21164 chips).
This option permits the compiler to generate any EV4 instruction plus any
instructions contained in the BWX extension. Applications compiled with
this option may incur emulation overhead on EV4 and EV5 processors.

• PCA56 - Generate instructions for PCA56 processors (21164PC chips).
This option permits the compiler to generate any EV4 instruction plus
any instructions contained in the BWX and MVI extensions. Applications
compiled with this option may incur emulation overhead on EV4 and EV5
processors.

• EV6 - Generate instructions for EV6 processors (21264 chips). This option
permits the compiler to generate any EV4 instruction, any instruction
contained in the BWX and MVI extensions, plus any instructions added for
the EV6 chip. These new instructions include a floating-point square root

3–80 SQL Module Language

instruction (SQRT), integer/floating-point register transfer instructions,
and additional instructions to identify extensions and processor groups.
Applications compiled with this option may incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

• EV67 or EV68 - Generate instructions for EV67 and EV68 processors
(21264A chips). This option permits the compiler to generate any EV6
instruction plus the new bit count instructions (CTLZ, CTPOP, and CTTZ).
However, the precompilers do not currently generate any of the new bit
count instructions and the EV67 and EV68 have identical instruction
scheduling models so the EV67 and EV68 are essentially identical to the
EV6. Applications compiled with this option may incur emulation overhead
on EV4, EV5, EV56, and PCA56 processors.

• EV7 - Generate instructions for the EV7 processor (21364 chip). This
option permits the compiler to generate any EV67 instruction. There
are no additional instructions available on the EV7 processor but the
compiler does have different instruction scheduling and prefetch rules for
tuning code for the EV7. Applications compiled with this option may incur
emulation overhead on EV4, EV5, EV56, and PCA56 processors.

The OpenVMS Alpha operating system includes an instruction emulator. This
capability allows any Alpha chip to execute and produce correct results from
Alpha instructions even if some of the instructions are not implemented on the
chip. Applications using emulated instructions will run correctly but may incur
significant emulation overhead at run time.

Of the available extension types, the Byte/word extension (BWX) will often be
beneficial for increased performance of Rdb-based applications. In addition, for
those Alpha implementations that support quad-issue of instructions (the EV6
and later processors), the compiler does have different instruction scheduling
and prefetch rules for tuning code.

For highest levels of performance of generated code, Oracle recommends that
the ARCHITECTURE qualifier be specified with the keyword that most closely
matches the lowest processor type of the machine where the program will
execute.

Language Compiler Support for ARCHITECTURE

If specified, the ARCHITECTURE qualifier is passed on the
command line to the specified language compiler by the SQL
Precompiler. The language compiler being used must support the
ARCHITECTURE qualifier and the architecture keyword value when
the ARCHITECTURE qualifier is specified.

SQL Module Language 3–81

C_PROTOTYPES=file-name
NOC_PROTOTYPES
This qualifier is deprecated and will not be supported in a future release. It
has been replaced by the PROTOTYPES qualifier.

C_STRING=[NO]BLANK_FILL
C_STRING=[NO]FIXED_CDD_STRINGS
C_STRING=([NO]BLANK_FILL,[NO]FIXED_CDD_STRINGS)
Specifies how to handle C host language character strings:

• [NO]BLANK_FILL (default: BLANK_FILL)

Controls whether or not C character strings are filled with blanks as
required by the SQL89 and ANSI/ISO SQL standards or if the null
terminator is placed after the last data byte of the source string.

• [NO]FIXED_CDD_STRINGS (default: NOFIXED_CDD_STRINGS)

Controls whether or not SQL treats C character strings from Oracle
CDD/Repository record definitions as fixed-length character strings or C
null-terminated strings.

c-string-options
Controls how SQL handles C host language character strings.

Use either or both of the [NO]BLANK_FILL and [NO]FIXED_CDD_STRINGS
keywords with the C_STRING qualifier to control C string characteristics.

CONNECT
NOCONNECT
Specifies whether or not SQL allows multiple user sessions and access to
global databases across modules. All SQL modules in an application must be
compiled with connections enabled or disabled.

The default setting is NOCONNECT.

CONSTRAINT_MODE=IMMEDIATE
CONSTRAINT_MODE=DEFERRED
CONSTRAINT_MODE=ON
CONSTRAINT_MODE=OFF
You can optionally specify either the CONSTRAINT_MODE=IMMEDIATE or
CONSTRAINT_MODE=DEFERRED qualifier on the SQL module language
command line to set the default constraint evaluation mode for commit-
time constraints. (This qualifier does not affect the evaluation of verb-time
constraints.) The default is DEFERRED; that is, commit-time constraints are
evaluated at commit time.

3–82 SQL Module Language

Setting constraints ON causes each of the affected constraints to be evaluated
immediately, as well as at the end of each statement, until the SET ALL
CONSTRAINTS OFF statement is issued or until the transaction completes
with a commit or rollback operation.

The SET ALL CONSTRAINTS statement overrides the CONSTRAINT_
MODE=IMMEDIATE or the CONSTRAINT_MODE=DEFERRED qualifier.

SQL users who require ANSI-standard SQL compatibility should set
constraints IMMEDIATE. The default (CONSTRAINT_MODE=DEFERRED) is
acceptable for most other users.

You can use the ON keyword instead of IMMEDIATE and the OFF keyword
instead of DEFERRED.

CONTEXT=
Instructs the SQL module processor to execute module language procedures in
the context of a particular distributed transaction. When you use this qualifier,
SQL generates an additional parameter for the procedures and places the
parameter as the last parameter declared in the procedure.

Following are the options you can specify with the CONTEXT= qualifier:

• NONE

Specifies that the SQL module processor does not add a context parameter
to any procedure in the module.

• ALL

Specifies that the SQL module processor adds a context parameter to every
procedure in the module.

• procedure-list

Specifies that the SQL module processor adds a context parameter to each
procedure listed. If you specify an entry name for a procedure in the list,
the SQL module processor changes the name of that procedure to the name
specified.

For example, you can specify the following qualifier on the command line:

/CONTEXT=(OPEN_PROC :OPEN_PROC_DIST, FETCH_PROC :FETCH_PROC_DIST,-
CLOS_PROC :CLOS_PROC_DIST)

SQL passes the context parameter to the OPEN_PROC, FETCH_PROC,
and CLOS_PROC procedures and gives them the new names specified. For
more information, see the Oracle Rdb7 Guide to Distributed Transactions.

SQL Module Language 3–83

Your application must use the context structure to pass the address of the
distributed TID from the host language program to procedures in the module
that are involved in the distributed transaction. You pass the context structure
to procedures that contain executable SQL statements, except statements
that you cannot execute when a transaction is already started or statements
that you cannot use when you explicitly call the DECdtm system services.
Section 2.9 lists the nonexecutable statements that do not take a context
structure.

You can also use the CONTEXT qualifier to specify a new name for a
procedure.

Qualifiers used with the CONTEXT qualifier specify which procedures receive
context parameters, and whether or not the names of the procedures are
changed.

Because you cannot use batch-update transactions with distributed
transactions, you should define the SQL$DISABLE_CONTEXT logical name
as True before you start a batch-update transaction. (Distributed transactions
require that you are able to roll back transactions. Because batch-update
transactions do not write to recovery-unit journal (.ruj) files, batch-update
transactions cannot be rolled back.)

If you attempt to start a distributed transaction using a batch-update
transaction, what happens depends upon whether you call the DECdtm
system services implicitly or explicitly and which SQL statement you use to
start the transaction:

• If you start a batch-update transaction and explicitly call the DECdtm
system services, SQL returns an error at compile time.

• If you start a batch-update transaction and implicitly call the DECdtm
system services, SQL takes the following actions:

If you use a SET TRANSACTION statement with the BATCH UPDATE
clause, SQL starts a nondistributed transaction.

If you use a DECLARE TRANSACTION statement with the BATCH
UPDATE clause, SQL returns an error at compile time.

The two-phase commit protocol applies only to distributed transactions. For
more information about distributed transactions, see the Oracle Rdb7 Guide to
Distributed Transactions.

context-file-name
The context-file-name is an SQL command procedure containing DECLARE
statements that you want to apply when your program compiles and executes.
See Section 2.11 for information about context-file-name.

3–84 SQL Module Language

database-options
Specifies that the SQL module processor will process a program for access to
the specified database type.

For more information regarding database options, see Section 2.10.

DEPRECATE
NODEPRECATE
The DEPRECATE and NODEPRECATE qualifiers specify whether or not the
SQL module processor writes diagnostic messages about deprecated features.

Deprecated features are currently allowed features that will not be allowed
in future versions of SQL; that is, they will be obsolete. For example, one
deprecated feature is the use of obsolete keywords such as VERB_TIME
instead of VERB TIME. A complete list of deprecated features appears on line
in the interactive SQL Help utility.

You can specify the WARN=WARNING qualifier if you prefer to have all
warning messages except those about deprecated features. You can specify
the WARN=(NOWARNING, DEPRECATE) qualifier if you prefer only the
deprecated feature messages. The WARN qualifier alone is equivalent to the
WARN=(WARNING, DEPRECATE) qualifier, which means that SQL writes
informational and warning messages, plus messages about deprecated features.
The NOWARN qualifier alone is equivalent to the WARN=(NOWARNING,
NODEPRECATE) qualifier, which means that SQL does not write any
messages.

EXTERNAL_GLOBALS
NOEXTERNAL_GLOBALS
Specifies whether or not alias references are coerced into alias definitions. An
alias definition is an alias declared with the GLOBAL keyword (the default)
in the DECLARE ALIAS statement. An alias reference is an alias declared
with the EXTERNAL keyword in the DECLARE ALIAS statement.

The EXTERNAL_GLOBALS qualifier treats alias references as alias
definitions. This qualifier provides compatibility with versions prior to V7.0.

The NOEXTERNAL_GLOBALS qualifier treats alias references as alias
references. The NOEXTERNAL_GLOBALS qualifier may be useful on
OpenVMS if your application shares an alias between multiple shareable
images.

The default setting is EXTERNAL_GLOBALS.

See the DECLARE ALIAS Statement for more information about alias
definitions and references. For information on using aliases and shareable
images, see the Oracle Rdb Guide to SQL Programming.

SQL Module Language 3–85

FLAG_NONSTANDARD
FLAG_NONSTANDARD=SQL92_ENTRY
FLAG_NONSTANDARD=SQL89
FLAG_NONSTANDARD=MIA
NOFLAG_NONSTANDARD
Specifies whether or not SQL identifies nonstandard syntax. Nonstandard
syntax, called an extension, refers to syntax that is not part of the ANSI/ISO
SQL standard or the Multivendor Integration Architecture (MIA) standard.
You can specify the following options:

• FLAG_NONSTANDARD

Notifies you of syntax that is an extension to the ANSI/ISO SQL standard.

• FLAG_NONSTANDARD=SQL92_ENTRY

Notifies you of syntax that is an extension to the ANSI/ISO SQL
standard. This qualifier has the same effect on flagging as does the
FLAG_NONSTANDARD qualifier.

• FLAG_NONSTANDARD=SQL89

Notifies you of syntax that is an extension to the ANSI/ISO 1989 standard.

• FLAG_NONSTANDARD=MIA

Notifies you of syntax that is an extension to the MIA standard.

• NOFLAG_NONSTANDARD

Prevents notification of extensions.

Preventing notification of extensions (NOFLAG_NONSTANDARD) is the
default.

FLOAT=D_FLOAT
FLOAT=G_FLOAT
FLOAT=IEEE_FLOAT
The /FLOAT qualifier determines the conversion that SQL Module language
performs on SQL Module Language procedure parameters declared as single
or double precision floating point SQL datatypes. SQL floating point datatypes
are FLOAT(n), REAL, and DOUBLE PRECISION. See Section 2.3 for details.
Internally to Oracle Rdb, single precision floating point types are represented
as F-Floating while double precision floating point types are represented and
G-Floating. See Table 3–2 for more details.

By default, parameters declared as single or double precision floating point
type are expected to be passed by the calling host language program in F-
Floating and G-Floating format, respectively. This is equivalent to using a
qualifier of /FLOAT=G_FLOAT with the SQL$MOD command.

3–86 SQL Module Language

If the command line for SQL$MOD has /FLOAT=D_FLOAT, then the single
and double precision floating point parameters are expected to be in F-Floating
and D-Floating format respectively. SQL Module Language will convert the
double precision parameters between D-Floating and G-Floating formats for
both input and output.

If the command line for SQL$MOD has /FLOAT=IEEE_FLOAT, the single
and double precision floating point parameters are expected to be in IEEE
S-Floating and IEEE T-Floating format, respectively. SQL Module Language
will convert between these formats and the internal F-Floating and G-Floating
formats for both input and output.

If a parameter of an SQL Module Language procedure is of a record type, any
fields of the record which are of floating point types follow the same rules as
described above.

The floating point formats of the host language program actual parameters
must agree with the format expected by the SQL Module Language actual
parameter. (See Section 3.5 for information concerning actual and formal
parameter agreement.)

Notes

Oracle Rdb always stores floating point numbers internally using
the VAX 32-bit and 64-bit types called F-Floating (F_FLOAT) and G-
Floating (G_FLOAT), respectively. This means that when IEEE formats
are used in a host language program, Oracle Rdb converts back and
forth between the VAX and IEEE formats. There are differences in the
number of available bits in the fraction and exponent between these
formats. Additionally, the IEEE formats have certain exponent values
reserved for infinity values. These differences can cause floating point
overflow or underflow as well as rounding errors during the conversion
process. See Appendix A of the Portable Mathematics Library in the
OpenVMS Operating System documentation for data on the maximum
and minimum values for VAX versus IEEE floating point formats.

When /FLOAT=IEEE_FLOAT is used, floating point data types may not
be imported from the Common Data Dictionary.

G_FLOAT
NOG_FLOAT
The /G_FLOAT and /NOG_FLOAT qualifiers are for backwards compatibility.
They are equivalent to /FLOAT=G_FLOAT and /FLOAT=D_FLOAT,

SQL Module Language 3–87

respectively. You should not specify both /FLOAT and /[NO]G_FLOAT
qualifiers.

INITIALIZE_HANDLES
NOINITIALIZE_HANDLES
Specifies whether or not alias definitions are coerced into alias references. The
NOINITIALIZE_HANDLES qualifier causes all alias declarations to be treated
as alias references.

An alias definition is an alias declared with the GLOBAL keyword (the
default) in the DECLARE ALIAS statement. An alias reference is an alias
declared with the EXTERNAL keyword in the DECLARE ALIAS statement.

The NOINITIALIZE_HANDLES qualifier may be useful for existing source
code on OpenVMS in coercing alias definitions into alias references. Because
there is usually no distinction between a definition and a reference on
OpenVMS, your application might declare an alias definition where an alias
reference is needed. If you reorganize your application into multiple images
that share aliases, you must distinguish the alias definition from the alias
reference. In this case, use the NOINITIALIZE_HANDLES qualifier to coerce
a definition into a reference without changing your source code.

If your application correctly declares alias references with the EXTERNAL
keyword, use the NOEXTERNAL_GLOBALS qualifier, instead of the
[NO]INITIALIZE_HANDLES to override the default on OpenVMS and cause
SQL to treat alias references properly as references.

The default setting is INITIALIZE_HANDLES. This qualifier overrides the
[NO]EXTERNAL_GLOBALS qualifier.

This qualifier is maintained for compatibility with previous versions of Oracle
Rdb. Use the [NO]EXTERNAL_GLOBALS qualifier, which provides more
precise control over alias definition. See the DECLARE ALIAS Statement
for more information about alias definitions and references. For information
on using aliases and shareable images, see the Oracle Rdb Guide to SQL
Programming.

LIST
NOLIST
Determines whether or not the SQL module processor creates a list file
containing the original module list along with any error messages from the
processing, and, if it does, what it is named. The NOLIST qualifier is the
default. If you specify the LIST qualifier and do not include a file specification,
the SQL module processor creates a list file with the same file name as your
module source file with the file extension .lis.

3–88 SQL Module Language

LOWERCASE_PROCEDURE_NAMES
NOLOWERCASE_PROCEDURE_NAMES
Forces the names of the module language procedures to be in lowercase. This
qualifier not only assumes that the SQL module procedure names are in
lowercase, it overrides the case in any quoted SQL module procedure.

The default setting is NOLOWERCASE_PROCEDURE_NAMES.

MACHINE_CODE
NOMACHINE_CODE
Oracle Rdb determines whether or not the SQL module processor includes
machine code in the list (.lis) file; however, to generate the list file with the
machine code in it, you must also specify the LIST qualifier.

The NOMACHINE_CODE qualifier is the default.

module-file-spec
The file specification for an SQL module source file. The default file extension
for the source file is .sqlmod.

module-qualifiers-1

module-qualifiers-2
A set of qualifiers that you can optionally apply to the SQL module processor
command line.

no-qualifiers-1

no-qualifiers-2
You can add the NO prefix to negate any qualifier in this group.

OBJECT
NOOBJECT
Specifies whether or not the SQL module processor creates an object file when
compiling the source file if the compilation does not generate fatal errors; and,
if an object file is produced, what the file is named. The OBJECT qualifier
is the default. If you specify the OBJECT qualifier and do not include a file
specification, the SQL module processor creates an object file with the same file
name as the source file and with the file extension .obj.

OPTIMIZATION_LEVEL optimization_option
Specifies the optimizer strategy to be used to process all queries within your
SQL module language program. Select the:

• AGGRESSIVE_SELECTIVITY option if you expect a small number of rows
to be selected.

SQL Module Language 3–89

• DEFAULT option to accept the Oracle Rdb defaults: FAST_FIRST and
DEFAULT SELECTIVITY. strategy.

• FAST_FIRST option if you want your program to return data to the user as
quickly as possible, even at the expense of total throughput.

• SAMPLED_SELECTIVITY option to use literals in the query to perform
preliminary estimation on indices.

• TOTAL_TIME option if you want your program to run at the fastest
possible rate, returning all the data as quickly as possible. If your
application runs in batch, accesses all the records in a query, and performs
updates or writes reports, you should specify TOTAL_TIME.

You can select either the TOTAL_TIME or the FAST_FIRST option in
conjunction with either the AGGRESSIVE_SELECTIVITY or SAMPLED_
SELECTIVITY option. Use a comma to separate the keywords and enclosed
the list in parentheses.

The following example shows how to use the OPTIMIZATION_LEVEL
qualifier:

$ SQL$MOD/OPTIMIZATION_LEVEL=(TOTAL_TIME,SAMPLED_SELECTIVITY) APPCODE.SQLMOD

Any query that explicitly includes an OPTIMIZE WITH, or OPTIMIZE_FOR
clause is not affected by the settings established using the OPTIMIZATION_
LEVEL qualifier.

You affect the optimizer strategy of static SQL queries with the optimization
level qualifier; however, the default optimizer strategy set by the
OPTIMIZATION_LEVEL qualifier can be overridden by the default optimizer
strategy set in a top-level SELECT statement.

In contrast, the SET OPTIMIZATION LEVEL statement specifies the query
optimization level for dynamic SQL query compilation only; the statement does
not affect the SQL compile-time environment nor does it affect the run-time
environment of static queries.

PACKAGE_COMPILATION
NOPACKAGE_COMPILATION
Determines if a package specification is produced and loaded into the ACS
library.

Oracle Rdb produces a package specification when you process a module
with the LANGUAGE ADA clause specified in the module header unless you
specify the NOPACKAGE_COMPILATION qualifier. The NOPACKAGE_
COMPILATION qualifier prevents the package specification from being loaded
in the ACS library, but still creates and compiles the .ada file.

3–90 SQL Module Language

The PACKAGE_COMPILATION qualifier is the default.

PARAMETER_CHECK
NOPARAMETER_CHECK
Specifies whether or not the SQL module processor compares the number of
formal parameters declared for a procedure with the number of parameters
specified in the SQL statement of the procedure:

• PARAMETER_CHECK (default)

Checks that parameter counts match and generates an error at run time
(not compile time) when they do not.

• NOPARAMETER_CHECK

Suspends checking parameters to improve module compilation time.
Consider using the NOPARAMETER_CHECK qualifier after you have
debugged your SQL module.

SQL checks parameter counts by default. To improve module compilation time,
you must explicitly use the NOPARAMETER_CHECK qualifier.

PASSWORD_DEFAULT=password
Specifies the user’s password at compile time.

If you use the USING DEFAULT clause of the DECLARE ALIAS statement,
you use this qualifier to pass the compile-time user’s password to the program.

PRAGMA=IDENT=string-literal
Using the IDENT keyword with the PRAGMA qualifier allows the user to pass
a text string to the SQL Module Language compiler to be written to the Object
Module Header. This is a way to note the generation of the compiler module.

If the PRAGMA (IDENT ...) clause is used as part of the DECLARE MODULE
statement, then that value will override any value used on the command line.

The ANALYZE/OBJECT and LIBRARY command can be used to display this
ident string, and the value will be displayed in LINKER map files.

OpenVMS limits the IDENT string to a 15 octet string. If the string is longer
than this (even with trailing spaces) then an error will be reported by the SQL
precompiler.

The following example demonstrates the use of the qualifier to establish the
generation of the compiler module.

$ SQL$MOD TEST/PRAGMA=IDENT="v1.2-32"

SQL Module Language 3–91

PROTOTYPES[=prototypesfile]
NOPROTOTYPES
The PROTOTYPES qualifier uses the LANGUAGE clause from the module to
generate routine declarations for the following languages: C (C++), Pascal, and
BLISS. The qualifier is ignored for all other language values.

The prototypes file specification defaults to the same device, directory, and file
name as the module language source. The file types default to .h for C, .PAS
for Pascal, and .REQ for BLISS.

For the BLISS language, the PROTOTYPES qualifier generates EXTERNAL
ROUTINE declarations for each SQL module language procedure.

For the Pascal language, the generated external procedure declarations are
suitable for inclusion in either a Pascal program or module. Structured types
(RECORD ... END RECORD), SQLDA, and SQLCA used by the SQL module
language procedures are declared as UNSAFE arrays of bytes to simplify
passing structures via these external definitions. However, care must be taken
as this form of declaration disables the strong typing checks in Pascal.

The output for the C language includes pre-processor directives to conditionally
include C++ "extern C" syntax and also allow multiple #include references.

The default setting is NOPROTOTYPES.

QUERY_CPU_TIME_LIMIT=total-seconds
Limits the amount of CPU time used to optimize a query for execution. If the
query is not optimized and prepared for execution before the CPU time limit is
reached, an error message is returned.

The default is unlimited time for the query to compile. Dynamic SQL options
are inherited from the compilation qualifier.

QUERY_ESTIMATES
NOQUERY_ESTIMATES
Specifies whether or not SQL returns the estimated number of rows and
estimated number of disk I/O operations in the SQLCA structure. If you
specify the default, which is the QUERY_ESTIMATES qualifier, SQL returns
the estimated number of rows in the field SQLCA.SQLERRD[2] and the
estimated number of disk I/O operations in the field SQLCA.SQLERRD[3]. The
value of SQLCA.SQLERRD[2] and SQLCA.SQLERRD[3] is normally 0 after
you execute an OPEN statement for a table.

3–92 SQL Module Language

The following example shows interactive SQL output from a statement that
accesses the INTRO_PERSONNEL database. The database was loaded
using the sample program SQL$INTRO_LOAD_EMPL_C.SQLMOD with
the QUERY_ESTIMATES qualifier on the module language command line.
The SQLCA.SQLERRD[2] field shows that SQL estimates 100 rows. The
SQLCA.SQLERRD[3] field shows that SQL estimates 16 disk I/O operations.

$ SQL$
SQL> ATTACH ’FILENAME intro_personnel’;
SQL> DECLARE MY_CURSOR
cont> TABLE CURSOR FOR
cont> SELECT * FROM EMPLOYEES;
SQL> OPEN MY_CURSOR;
SQL> SHOW SQLCA;
SQLCA:

SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 0
SQLERRD: [0]: 0

[1]: 0
[2]: 100
[3]: 16
[4]: 0
[5]: 0

SQLWARN0: SQLWARN1: SQLWARN2:
SQLWARN3: SQLWARN4: SQLWARN5:
SQLWARN6: SQLWARN7:

QUERY_MAX_ROWS=total-rows
Limits the number of records returned during query processing by counting the
number of rows returned by the query and returning an error message if the
query exceeds the total number of rows specified.

The default is an unlimited number of record fetches. Dynamic SQL options
are inherited from the compilation qualifier.

QUERY_TIME_LIMIT=total-seconds
Limits the number of records returned during query processing by counting the
number of seconds used to process the query and returning an error message if
the query exceeds the total number of seconds specified.

The default is unlimited time for the query to compile. Dynamic SQL options
are inherited from the compilation qualifier.

ROLLBACK_ON_EXIT
Rolls back outstanding transactions when a program exits from SQL.

SQL Module Language 3–93

On OpenVMS outstanding transactions are committed when a program exits
from SQL by default. Therefore, if you want to roll back changes, specify this
qualifier on the command line.

TRANSACTION_DEFAULT=IMPLICIT
TRANSACTION_DEFAULT=DISTRIBUTED
NOTRANSACTION_DEFAULT
Specifies when SQL starts a transaction and how SQL handles default
distributed transactions. You can specify the following options:

• TRANSACTION_DEFAULT=IMPLICIT

Causes SQL to start a transaction when you issue either a SET
TRANSACTION statement or the first executable SQL statement in a
session.

• TRANSACTION_DEFAULT=DISTRIBUTED

Causes SQL to use the distributed transaction identifier (TID) for the
default distributed transaction established by the DECdtm system
service SYS$START_TRANS. Using this option eliminates the need to
declare context structures in host language programs and to pass context
structures to SQL module procedures. Because it closes all cursors, it also
eliminates the need to call the SQL_CLOSE_CURSORS routine.

You must explicitly call the DECdtm system services when you use this
option.

This option provides support for the Structured Transaction Definition
Language (STDL) of the Multivendor Integration Architecture (MIA)
standard.

If you specify the TRANSACTION_DEFAULT=DISTRIBUTED option with
the CONTEXT qualifier, you must declare a context structure and pass the
context structure to the statements named in the CONTEXT qualifier or,
if you specify CONTEXT=ALL, to most executable statements involved in
the distributed transaction. See Section 2.9 for information about which
executable statements do not require a context structure.

• NOTRANSACTION_DEFAULT

Prevents SQL from starting a transaction unless you execute a SET
TRANSACTION statement. If you use this qualifier and issue an
executable statement without first issuing a SET TRANSACTION
statement, SQL returns an error.

The default is TRANSACTION_DEFAULT=IMPLICIT.

3–94 SQL Module Language

USER_DEFAULT=username
Specifies the user name at compile time.

If you use the USER DEFAULT clause of the DECLARE ALIAS statement, you
use this qualifier to pass the compile-time user name to the program.

WARNING
NOWARNING
You can use combinations of the warning options to specify which warning
messages the SQL module processor writes. If you specify only a single
warning option, you do not need the parentheses.

The WARNING and NOWARNING qualifiers specify whether or not the SQL
module processor writes informational and warning messages.

warning-option
Specifies whether the SQL module processor writes informational and warning
messages to your terminal, a list file, or both. The WARN qualifier is the
default. You can specify two warning options with the WARN qualifier to
customize message output.

You cannot specify warning options if you specify the NOWARN qualifier.

Usage Notes

• Although SQL module language processes dynamic strings correctly in
other contexts, you must use either a static descriptor or a dynamic
descriptor of exact length whenever you use the GENERAL language.

When you create an SQL module language source file specifying the
GENERAL language and pass character parameters by descriptor, the
length of the character string you pass must be equal to the maximum
size of the character parameter specified. If you do not, SQL stores
extraneous characters in the data-field character positions after those
in the original dynamic string, instead of padding the string with blank
spaces. The restriction applies only when you call the module language
from a language that uses dynamic instead of static string descriptors
(such as BASIC or VAX SCAN), in particular when passing a parameter to
an INSERT operation.

You can prevent this problem from occurring in a language such as BASIC
by putting the string definition in a MAP declaration, which makes the
string static instead of dynamic.

SQL Module Language 3–95

• Give different file names to host language module source files and their
corresponding SQL module files, even though they have different file
extensions. Both the SQL module processor and the host language compiler
produce .obj files. If the source file names are not distinct, the LINK
command may fail.

• When you compile an SQL module using Ada as the source language,
Oracle Rdb generates an Ada package that contains Ada declarations for
all procedures in the SQL module. Part of the declaration for each routine
is the declaration of each parameter. These parameters will be declared
using data types in the SQL_STANDARD package. Refer to the Usage
Note at the end of Section 3.5 for further information.

• Using the database-options qualifier does not create backward compatilility.
In this case, backward compatibility refers to accessing an older version of
the database system remotely. However, the interface still needs support
routines which are available only in the latest version. In other words, you
cannot compile and link under Oracle Rdb V6.0 and run the program under
Oracle Rdb V5.1.

Example

Example 1: Compiling and linking a program with an SQL module

The following example shows the commands to compile, link, and run the
sample Pascal program in the example from Section 3.2:

$ SQLMOD :== SQLMOD
$ SQLMOD LIST_EMP_PASMOD.SQLMOD
$ PASCAL LIST_EMP.PAS
$! This LINK command requires that the logical name
$! LNK$LIBRARY is defined as SYS$LIBRARY:SQL$USER.OLB
$ LINK LIST_EMP.OBJ, LIST_EMP_PASMOD.OBJ
$ RUN LIST_EMP.EXE
Matching Employees:
Alvin Toliver
Louis Tarbassian

3–96 SQL Module Language

4
SQL Precompiler

The SQL precompiler lets you embed SQL statements directly in programs
written in Ada, C, COBOL, FORTRAN, Pascal, and PL/I. In contrast, SQL
module language allows procedures that contain SQL statements to be
called from any host language. The SQL precompiler supports only specific
languages. Chapter 3 describes the advantages of SQL module language as
compared with the SQL precompiler.

For a detailed discussion of programming considerations when using the SQL
precompiler, see the Oracle Rdb Guide to SQL Programming.

4.1 Embedding SQL Statements in Programs
You have a number of factors to consider when embedding SQL statements
in a host language program. In the following sections, you learn how to use
the two-phase commit protocol and how to embed clauses in the DECLARE
MODULE statement to specify character sets, quoting rules, default date
format, and so forth.

4.1.1 Embedding Module Clauses in Host Language Code
You can include module clauses in a DECLARE MODULE statement in your
host language programs to control:

• Dialect settings, which let you specify with one clause: character length,
double quotation marks, identifiers as keywords, read-only views, and the
interpretation of DATE and CURRENT_TIMESTAMP data types

• Character sets, which specify the literal, national, default, identifier and
display character sets for the module

• Schema name, which names the default schema name for the module

• Authorization identifier, which specifies the authorization identifier for the
module

SQL Precompiler 4–1

• Module language options, which specify the alias for the module, individual
dialect settings (character length, quoting rules, and so forth), colons for
prefixing parameter names, and privilege checking for executing a module

For more information about using module clauses in the DECLARE MODULE
statement, see the DECLARE MODULE Statement.

4.1.2 Using the Two-Phase Commit Protocol in Embedded Programs
When you use precompiled SQL, you can explicitly use the two-phase commit
protocol. To do this, your application must explicitly call the transaction
manager and declare a context structure. The context structure contains the
distributed transaction identifier (TID) as one of its elements. In addition,
most executable SQL statements involved in the distributed transaction
must include a USING CONTEXT clause. The USING CONTEXT clause
associates the context structure with the SQL statement. Section 2.9 lists the
nonexecutable statements that do not take a context structure.

The following syntax diagram shows the format for an embedded SQL
statement that is part of a distributed transaction:

EXEC SQL USING CONTEXT <:variable> simple-statement

For example, the following embedded SQL statement opens a cursor as part of
a distributed transaction:

EXEC SQL USING CONTEXT :DISTR_TRANS OPEN CURSOR1

Because you cannot use batch-update transactions with distributed
transactions, you should define the SQL$DISABLE_CONTEXT logical name
as True before you start a batch-update transaction. (Distributed transactions
require that you are able to roll back transactions. Because batch-update
transactions do not write to recovery-unit journal (.ruj) files, batch-update
transactions cannot be rolled back.)

If you attempt to start a distributed transaction using a batch-update
transaction, what happens depends upon whether you call the DECdtm
system services implicitly or explicitly, and which SQL statement you use to
start the transaction:

• If you start a batch-update transaction and explicitly call the DECdtm
system services, SQL returns an error at compile time.

4–2 SQL Precompiler

• If you start a batch-update transaction and implicitly call the DECdtm
system services, SQL takes the following actions:

If you use a SET TRANSACTION statement with the BATCH UPDATE
clause, SQL starts a nondistributed transaction.

If you use a DECLARE TRANSACTION statement with the BATCH
UPDATE clause, SQL returns an error at compile time.

The two-phase commit protocol applies only to distributed transactions. For
more information about distributed transactions, see the Oracle Rdb7 Guide to
Distributed Transactions.

SQL Precompiler 4–3

4.2 SQL Precompiler Syntax

The SQL precompiler provides special keywords and syntax that allow you to
include (embed) simple and compound statements directly into host language
programs. Then you can use the SQL precompiler to process the combined
embedded statements and host language code to produce an object file for
linking and execution.

Environment

You can use SQL precompiler syntax only in Ada, C, COBOL, FORTRAN,
Pascal, and PL/I host language source files. The SQL precompiler supports
no other host languages. If you use a host language other than the ones
mentioned for embedded SQL and you want to use the SQL interface with it,
you must use the SQL module processor.

Format

EXEC SQL simple-statement
compound-statement ending-symbol

ending-symbol =

;
END-EXEC

simple-statement =

SQL statement

4–4 SQL Precompiler

compound-statement =

BEGIN
<beginning-label>: pragma-clauses

variable-declaration

END
compound-use-statement <ending-label>:

pragma-clauses =

pragma-option

PRAGMA (pragma-option)
,

pragma-option =

ATOMIC
NOT ATOMIC
ON ALIAS <alias-name>
with-clause
optimize-clause

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

SQL Precompiler 4–5

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

Arguments

compound-statement
A statement that can contain multiple SQL statements in an SQL module
procedure or in an embedded SQL procedure.

An embedded procedure that contains a compound statement is called an
embedded multistatement procedure. SQL supports a restricted subset
of SQL statements in a compound statement embedded in a host langauge
program. Refer to Table 1–1 for a list of valid SQL statements allowed in a
compound statement.

Compound statements can also include program-like, flow-of-control statements
(IF, LOOP, CASE, LEAVE), transaction management statements (COMMIT
and ROLLBACK), a variable declaration statement (SET assignment), a
cursor-processing statement (FOR), and a procedure-debugging statement
(TRACE).

See the Compound Statement for a complete description of a compound
statement.

ending-symbol
Ends an embedded simple or an embedded compound statement. To end
an embedded statement, follow the host language requirements listed in
Table 4–1.

4–6 SQL Precompiler

Table 4–1 Ending Embedded SQL Statements

Language Symbols to End EXEC SQL Statements

Ada Semicolon (;)
C Semicolon (;)
COBOL END-EXEC
FORTRAN Ending symbol not required
Pascal Semicolon (;)
PL/I Semicolon (;)

EXEC SQL
Prefixes each simple or compound statement. Converting interactive
statements to precompiled statements requires the added step of starting
each simple or compound statement with the keywords EXEC SQL. SQL
cannot process these statements otherwise. Also, both keywords EXEC and
SQL must be on the same line, and you cannot insert comments between them.

simple-statement
A statement that can contain a single SQL statement only. Refer to Table 1–1
for a list of SQL statements that are valid within a simple statement.

See the Simple Statement for a complete description of a simple statement.

Usage Notes

• An embedded compound statement cannot include either a beginning or an
ending label.

• The keyword PROCEDURE cannot be used in an embedded SQL
procedure.

• If the embedded statement is a compound statement, the local variable
can conceal a host variable of the same name for the duration of the
BEGIN . . . END block.

• If a DECLARE TABLE statement appears before a CREATE DATABASE
statement, your compilation could fail with an error message indicating
that SQL$DATABASE or SQL_DATABASE could not be opened or that
certain database objects could not be found in your database.

SQL Precompiler 4–7

The SQL precompiler processes metadata statements before other
statements. If your DECLARE TABLE statement is found before the
CREATE DATABASE statement that defines it, then SQL will try to attach
to SQL$DATABASE or SQL_DATABASE for the metadata lookups.

Place your CREATE DATABASE statement before your DECLARE TABLE
statements.

• The SQL Precompiler also supports the syntax BEGIN DECLARE
SECTION. This clause is ambiguous because of the BEGIN DECLARE
of the compound statement. Therefore, within the EXEC-SQL compound
statement only one pragma clause can be selected. The use of the
PRAGMA list allows all options to be specified.

• The clauses ON ALIAS, OPTIMIZE and WITH HOLD must only appear on
the outer-most BEGIN of a compound statement.

Example

Example 1: Embedding a compound statement in a host language program

The following example shows how to embed a multistatement procedure in a
program. The keyword PROCEDURE does not appear in an embedded SQL
application.

4–8 SQL Precompiler

EXEC SQL BEGIN DECLARE SECTION ;
int x ;

EXEC SQL END DECLARE SECTION ;

EXEC SQL
BEGIN

DECLARE :y INTEGER ;

SET :y = 2 * :x ; -- :x is a host variable

UPDATE employees
SET salary = :y ;
WHERE .

.

. ;

BEGIN
DECLARE :x INTEGER ;

SET :x = 100 ; -- :x is a local variable

UPDATE employees
SET salary = :x ;
WHERE .

.

. ;
END ;

END ;

SQL Precompiler 4–9

4.3 SQL Precompiler Command Line

You can define a symbol to help you invoke the SQL precompiler:

$ SQLPRE == "SQLPRE"

Because the SQL precompiler requires a language qualifier, you might want to
define a particular language so that you can invoke the command on one line:

$ SADA == "SQLPRE/ADA"
$ SADA SQL_DYNAMIC

By defining symbols, you can invoke the SQL precompiler with or without a file
specification for a host language program file:

• If you invoke the SQL precompiler without an input file specification for
a host language program file, the precompiler prompts you for it. For
example:

$ SQLPRE
INPUT FILE> pre-host-file-spec

• If you invoke the SQL precompiler with a host language program file as
part of the DCL command line, SQL starts processing your file immediately
after you press the Return key. For example:

$ SADA pre-host-file-spec pre-qualifiers

Whichever method you choose to invoke the precompiler, you have the
option to specify a wide range of qualifiers that control how the SQL
precompiler processes the module file. The syntax diagrams show the format
for the qualifiers that you can include with the host language program file
specification.

Format

pre-host-file-qual =

SQLPRE pre-host-file-spec
<context-file-name>

pre-lang-qualifiers
pre-qualifiers

4–10 SQL Precompiler

pre-lang-qualifiers =

/ ADA
CC

=VAXC
=DECC

COBOL
FORTRAN
PASCAL
PLI

pre-qualifiers =

/ ARCHITECTURE= architecture_options
/ ANSI_FORMAT

NO EXTEND_SOURCE
G_FLOAT
LIST

= <file-spec>
MACHINE_CODE
OBJECT

= <file-spec>
/ FLOAT= D_FLOAT

G_FLOAT
IEEE_FLOAT

/ SQLOPTIONS= (opt-no-qualifiers)
opt-qualifiers

,

architecture_options =

GENERIC
HOST
EV4
EV5
EV56
PCA56
EV6
EV67
EV68
EV7

SQL Precompiler 4–11

opt-no-qualifiers =

CONNECT
NO DECLARE_MESSAGE_VECTOR

EXTERNAL_GLOBALS
FLAG_NONSTANDARD

= SQL92_ENTRY
= SQL89
= MIA

INITIALIZE_HANDLES
PRAGMA = (IDENT = string-literal)
QUERY_EXTIMATES
QUIET_COMMIT
TRANSACTION_DEFAULT

= IMPLICIT
= DISTRIBUTED

WARN
= (warning-option)

,

warning-option =

WARNING
NOWARNING
DEPRECATE
NODEPRECATE

,

opt-qualifiers =

C_STRING = c-string-options
constraint-options
database-options
optimization-options
QUERY_TIME_LIMIT = <total-seconds>
QUERY_MAX_ROWS = <total-rows>
QUERY_CPU_TIME_LIMIT = <total-seconds>
USER_DEFAULT = <username>
PASSWORD_DEFAULT = <password>
ROLLBACK_ON_EXIT

4–12 SQL Precompiler

c-string-options =

BLANK_FILL
NO

FIXED_CDD_STRINGS
NO

(BLANK_FILL , FIXED_CDD_STRINGS)
NO NO

constraint-options =

CONSTRAINT_MODE = IMMEDIATE
DEFERRED
ON
OFF

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA=V1
VIDA=V2
VIDA=V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070
RDB071

SQL Precompiler 4–13

optimization-options=

OPTIMIZATION_LEVEL= DEFAULT
(AGGRESSIVE_SELECTIVITY)

FAST_FIRST
SAMPLED_SELECTIVITY
TOTAL_TIME

,

Arguments

ANSI_FORMAT
NOANSI_FORMAT
Specifies whether the SQL precompiler accepts terminal-format COBOL or
ANSI-format COBOL.

The default is the terminal format COBOL NOANSI_FORMAT qualifier.

ARCHITECTURE=architecture_options
For improved performance of generated code, the ARCHITECTURE command
line qualifier can be used on OpenVMS Alpha systems. The ARCHITECTURE
qualifier is ignored on Itanium systems.

The ARCHITECTURE qualifier specifies the lowest version of the Alpha
architecture where this code will run. This allows the compiler to generate
more efficient code, with the tradeoff that code may not run on older systems.

All Alpha processors implement a core set of instructions and, in some cases,
the following extensions:

• Byte/word extension (BWX) - The instructions that comprise the BWX
extension are LDBU, LDWU, SEXTB, SEXTW, STB, and STW.

• Square-root and floating-point convert extension (FIX) - The instructions
that comprise the FIX extension are FTOIS, FTOIT, ITOFF, ITOFS, ITOFT,
SQRTF, SQRTG, SQRTS, and SQRTT.

• Count extension (CIX) - The instructions that comprise the CIX extension
are CTLZ, CTPOP, and CTTZ.

4–14 SQL Precompiler

• Multimedia extension (MVI) - The instructions that comprise the MVI
extension are MAXSB8, MAXSW4, MAXUB8, MAXUW4, MINSB8,
MINSW4, MINUB8, MINUW4, PERR, PKLB, PKWB, UNPKBL, and
UNPKBW.

The Alpha Architecture Reference Manual describes the extensions in detail.

The keyword specified with the ARCHITECTURE qualifier determines which
instructions the compiler can generate and which coding rules it must follow.

• GENERIC - Generate instructions that are appropriate for all Alpha
processors. This option is the default and is equivalent to /ARCH=EV4.

• HOST - Generate instructions for the processor that the compiler is
running on (for example, EV56 instructions on an EV56 processor, EV7
instructions on an EV7 processor, and so on).

• EV4 - Generate instructions for the EV4 processor (21064, 20164A, 21066,
and 21068 chips). Applications compiled with this option will not incur any
emulation overhead on any Alpha processor.

• EV5 - Generate instructions for the EV5 processor (some 21164 chips).
(Note that the EV5 and EV56 processors both have the same chip number -
21164.) Applications compiled with this option will not incur any emulation
overhead on any Alpha processor.

• EV56 - Generate instructions for EV56 processors (some 21164 chips).
This option permits the compiler to generate any EV4 instruction plus any
instructions contained in the BWX extension. Applications compiled with
this option may incur emulation overhead on EV4 and EV5 processors.

• PCA56 - Generate instructions for PCA56 processors (21164PC chips).
This option permits the compiler to generate any EV4 instruction plus
any instructions contained in the BWX and MVI extensions. Applications
compiled with this option may incur emulation overhead on EV4 and EV5
processors.

• EV6 - Generate instructions for EV6 processors (21264 chips). This option
permits the compiler to generate any EV4 instruction, any instruction
contained in the BWX and MVI extensions, plus any instructions added for
the EV6 chip. These new instructions include a floating-point square root
instruction (SQRT), integer/floating-point register transfer instructions,
and additional instructions to identify extensions and processor groups.
Applications compiled with this option may incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

SQL Precompiler 4–15

• EV67 or EV68 - Generate instructions for EV67 and EV68 processors
(21264A chips). This option permits the compiler to generate any EV6
instruction plus the new bit count instructions (CTLZ, CTPOP, and CTTZ).
However, the precompilers do not currently generate any of the new bit
count instructions and the EV67 and EV68 have identical instruction
scheduling models so the EV67 and EV68 are essentially identical to the
EV6. Applications compiled with this option may incur emulation overhead
on EV4, EV5, EV56, and PCA56 processors.

• EV7 - Generate instructions for the EV7 processor (21364 chip). This
option permits the compiler to generate any EV67 instruction. There
are no additional instructions available on the EV7 processor but the
compiler does have different instruction scheduling and prefetch rules for
tuning code for the EV7. Applications compiled with this option may incur
emulation overhead on EV4, EV5, EV56, and PCA56 processors.

The OpenVMS Alpha operating system includes an instruction emulator. This
capability allows any Alpha chip to execute and produce correct results from
Alpha instructions even if some of the instructions are not implemented on the
chip. Applications using emulated instructions will run correctly but may incur
significant emulation overhead at run time.

Of the available extension types, the Byte/word extension (BWX) will often be
beneficial for increased performance of Rdb-based applications. In addition, for
those Alpha implementations that support quad-issue of instructions (the EV6
and later processors), the compiler does have different instruction scheduling
and prefetch rules for tuning code.

For highest levels of performance of generated code, Oracle recommends that
the ARCHITECTURE qualifier be specified with the keyword that most closely
matches the lowest processor type of the machine where the program will
execute.

Language Compiler Support for ARCHITECTURE

If specified, the ARCHITECTURE qualifier is passed on the
command line to the specified language compiler by the SQL
Precompiler. The language compiler being used must support the
ARCHITECTURE qualifier and the architecture keyword value when
the ARCHITECTURE qualifier is specified.

c-string-options
Controls how SQL handles C host language character strings.

4–16 SQL Precompiler

Use either or both of the [NO]BLANK_FILL and [NO]FIXED_CDD_STRINGS
options with the C_STRING keyword to control C string characteristics.

SQLOPTIONS= (C_STRING = [NO]BLANK_FILL)
SQLOPTIONS= (C_STRING = [NO]FIXED_CDD_STRINGS)
SQLOPTIONS= (C_STRING = ([NO]BLANK_FILL, [NO]FIXED_CDD_
STRINGS))
Specifies how to handle C host language character strings:

• [NO]BLANK_FILL (default: BLANK_FILL)

Controls whether or not C character strings are filled with blanks as
required by the SQL89 and ANSI/ISO SQL standards or if the null
terminator is placed after the last data byte of the source string.

• [NO]FIXED_CDD_STRINGS (default: NOFIXED_CDD_STRINGS)

Controls whether or not SQL treats C character strings from
CDD/Repository record definitions as fixed-length character strings or
C null-terminated strings.

SQLOPTIONS= (CONNECT)
SQLOPTIONS= (NOCONNECT)
Specifies whether or not SQL allows multiple user connections and access to
global databases across modules. All SQL modules in an application must be
compiled with connections enabled or disabled.

The SQLOPTIONS=NOCONNECT qualifier is the default.

SQLOPTIONS= (CONSTRAINT_MODE=IMMEDIATE)
SQLOPTIONS= (CONSTRAINT_MODE=DEFERRED)
You can optionally specify either the SQLOPTIONS=(CONSTRAINT_
MODE=IMMEDIATE) or SQLOPTIONS=(CONSTRAINT_MODE=DEFERRED)
qualifier on the SQL precompiler command line to set the default constraint
evaluation mode for commit-time constraints. (This qualifier does not affect
the evaluation of verb-time constraints.) The default is DEFERRED; that is,
commit-time constraints are evaluated at commit time.

Setting constraints IMMEDIATE causes each affected constraint to be
evaluated immediately, as well as at the end of each statement, until the
SET ALL CONSTRAINTS DEFERRED statement is issued, or until the
transaction completes with a commit or rollback operation.

The SET ALL CONSTRAINTS statement overrides the constraint evaluation
mode specified in the SQLOPTIONS qualifier. For more information about the
default constraint mode, see SET Statement.

SQL Precompiler 4–17

SQL users who require ANSI-standard SQL compatibility should set
constraints as IMMEDIATE. The default (CONSTRAINT_MODE=DEFERRED)
is acceptable for most other users.

SQLOPTIONS= (CONSTRAINT_MODE=ON)
SQLOPTIONS= (CONSTRAINT_MODE=OFF)
The qualifiers CONSTRAINT_MODE=ON and CONSTRAINT_MODE=OFF
duplicate the behavior of the qualifiers CONSTRAINT_MODE=IMMEDIATE
and CONSTRAINT_MODE=DEFERRED, respectively.

context-file-name
An SQL command procedure containing DECLARE statements that you want
to apply when your program compiles and executes. See Section 2.11 for
information about context-file-name.

database-options
Specifies that the SQL precompiler correctly processes a program for access to
the specified database type. For more information regarding database options,
see Section 2.10.

The precompiler database option can in turn be overridden by an attach to a
database at run time. On the DECLARE statement, SQL sets the database
options of the specified database.

By default, the SQL precompiler determines the valid database from the
database used to compile the program. If no database is used to compile the
program, the precompiler processes the program for a database created with
the most recent version of Oracle Rdb.

SQLOPTIONS= (DECLARE_MESSAGE_VECTOR)
SQLOPTIONS= (NODECLARE_MESSAGE_VECTOR)
Specifies that the RDB$MESSAGE_VECTOR structure be declared in the host
language as part of the SQLCA during SQLPRE processing. You can use this
switch with language compilers that support the ’$’ special character.

The default is the SQLOPTIONS=(DECLARE_MESSAGE_VECTOR) qualifier.

EXTEND_SOURCE
NOEXTEND_SOURCE
Allows the SQL precompiler to view 132 columns of FORTRAN source rather
than the default of 72 columns.

4–18 SQL Precompiler

SQLOPTIONS= (EXTERNAL_GLOBALS)
SQLOPTIONS= (NOEXTERNAL_GLOBALS)
Specifies whether or not alias references are coerced into alias definitions. An
alias definition is an alias declared with the GLOBAL keyword (the default)
in the DECLARE ALIAS statement. An alias reference is an alias declared
with the EXTERNAL keyword in the DECLARE ALIAS statement.

The EXTERNAL_GLOBALS qualifier treats alias references as alias
definitions. This qualifier provides compatibility with versions prior to V7.0.

The NOEXTERNAL_GLOBALS qualifier treats alias references as alias
references. The NOEXTERNAL_GLOBALS qualifier may be useful on
OpenVMS if your application shares an alias between multiple shareable
images.

The default on OpenVMS is the SQLOPTIONS=(EXTERNAL_GLOBALS)
qualifier.

See the DECLARE ALIAS Statement for more information about alias
definitions and references. For information on using aliases and shareable
images, see the Oracle Rdb Guide to SQL Programming.

SQLOPTIONS= (FLAG_NONSTANDARD)
SQLOPTIONS= (FLAG_NONSTANDARD =SQL92_ENTRY)
SQLOPTIONS= (FLAG_NONSTANDARD =SQL89)
SQLOPTIONS= (FLAG_NONSTANDARD =MIA)
SQLOPTIONS= (NOFLAG_NONSTANDARD)
Specifies whether or not SQL identifies nonstandard syntax. Nonstandard
syntax, called an extension, refers to syntax that is not part of the ANSI/ISO
SQL standard or the Multivendor Integration Architecture (MIA) standard.
You can specify the following options:

• (FLAG_NONSTANDARD)

Notifies you of syntax that is an extension to the ANSI/ISO SQL standard.

• (FLAG_NONSTANDARD=SQL92_ENTRY)

Notifies you of syntax that is an extension to the ANSI/ISO SQL standard.
This qualifier has the same effect on flagging as does the (FLAG_
NONSTANDARD) qualifier.

• (FLAG_NONSTANDARD=SQL89)

Notifies you of syntax that is an extension to the ANSI/ISO 1989 standard.

• (FLAG_NONSTANDARD=MIA)

Notifies you of syntax that is an extension to the MIA standard.

SQL Precompiler 4–19

• (NOFLAG_NONSTANDARD)

Prevents notification of extensions.

The default is the SQLOPTIONS=(NOFLAG_NONSTANDARD) qualifier.

FLOAT=D_FLOAT
FLOAT=G_FLOAT
FLOAT=IEEE_FLOAT
Specifies the floating point representation that the SQL precompiler uses for
floating point data types in a formal parameter list and specifies the floating
point qualifier passed to the language compiler.

The SQL Precompiler translates embedded SQL into host language
declarations and procedure calls. In addition it generates the procedures
behind the procedure calls. The /FLOAT qualifier for SQL$PRE determines the
floating point format that SQL$PRE assumes for host language variables and,
hence, determines the conversions that will be made internal to the generated
SQL procedures. When SQL$PRE calls the host language compiler to process
the precompiled program it passes an equivalent qualifier to its /FLOAT
qualifer that is supported by the host language. This means that to the extent
that the floating point format of host language variables is determined by a
/FLOAT qualifier, the floating point formats of the host language variables and
the parameters of procedure calls generated by SQL$PRE are guaranteed to be
compatible. When the host language provides a type which explicitly declares
the floating point format of the an individual variable, SQL$PRE uses that
information to determine the conversion needed regardless of the setting of the
/FLOAT qualifier.

The SQL Precompiler’s default floating point format for single or double
precision floating point types is F-Floating and G-Floating format, respectively.
This is equivalent to using a qualifier of /FLOAT=G_FLOAT with the SQL$PRE
command.

If a host language variable is a record or structure (for example a qualified
parameter in the INTO clause of a singleton SELECT statement), any fields in
the record or structure that are of a floating point type follow the same rules
as described above.

There are a few cases where a host language provides mechanisms for
specifying floating point format that are not recognized by SQL$PRE. In
these cases, it is the developer’s responsibility to ensure that the format is
what SQL$PRE expects. These cases are described in host language-specific
sections in Section 4.4.

4–20 SQL Precompiler

Note

The Common Data Dictionary supports floating point types. However
when the /FLOAT qualifier specifies IEEE_FLOAT, these types may not
be used.

G_FLOAT
NOG_FLOAT
The /G_FLOAT and /NOG_FLOAT qualifiers are for backwards compatibility.
They are equivalent to /FLOAT=G_FLOAT and /FLOAT=D_FLOAT,
respectively. You should not specify both /FLOAT and /[NO]G_FLOAT
qualifiers.

SQLOPTIONS= (INITIALIZE_HANDLES)
SQLOPTIONS= (NOINITIALIZE_HANDLES)
Specifies whether or not alias definitions are coerced into alias references. The
NOINITIALIZE_HANDLES qualifier causes all alias declarations to be treated
as alias references.

An alias definition is an alias declared with the GLOBAL keyword (the
default) in the DECLARE ALIAS statement. An alias reference is an alias
declared with the EXTERNAL keyword in the DECLARE ALIAS statement.

The NOINITIALIZE_HANDLES qualifier may be useful for existing source
code on OpenVMS in coercing alias definitions into alias references. Because
there is usually no distinction between a definition and a reference on
OpenVMS, your application might declare an alias definition where an alias
reference is needed. If you reorganize your application into multiple images
that share aliases, you must distinguish the alias definition from the alias
reference. In this case, use the NOINITIALIZE_HANDLES qualifier to coerce
a definition into a reference without changing your source code.

If your application correctly declares alias references with the EXTERNAL key-
word, use the NOEXTERNAL_GLOBALS qualifier, instead of [NO]INITIALIZE_
HANDLES to override the default on OpenVMS and cause SQL to treat alias
references properly as references.

The default is the SQLOPTIONS=INITIALIZE_HANDLES qualifier. This
qualifier overrides the [NO]EXTERNAL_GLOBALS qualifier.

The SQLOPTIONS=[NO]INITIALIZE_HANDLES qualifier is maintained for
compatibility with previous versions of Oracle Rdb. For V7.0 and higher, use
the [NO]EXTERNAL_GLOBALS qualifier, which provides more precise control
over alias definition.

SQL Precompiler 4–21

See the DECLARE ALIAS Statement for more information about alias
definitions and references. For information on using aliases and shareable
images, see the Oracle Rdb Guide to SQL Programming.

LIST
NOLIST
Oracle Rdb determines whether or not the SQL precompiler generates a
list file (default file extension .lis) that contains information about the SQL
compilation and the host language compilation. In addition, if the logical
name SQL$KEEP_PREP_FILES is defined, the SQL precompiler retains an
intermediate module list file (file extension .mli), which contains information
about the SQL compilation only. If you specify the LIST qualifier and do not
include a file specification, the SQL precompiler creates a list file with the
same file name as your source file with the file extension .lis.

The NOLIST qualifier is the default.

MACHINE_CODE
NOMACHINE_CODE
Oracle Rdb specifies whether or not the SQL precompiler includes machine
code in the list file; however, to generate the list file with the machine code in
it, you must also specify the LIST qualifier.

The NOMACHINE_CODE qualifier is the default.

OBJECT
NOOBJECT
Specifies whether or not the SQL precompiler creates an object file when
compiling the source file if the compilation does not generate fatal errors; and,
if an object file is produced, what the file is named. If you specify the OBJECT
qualifier and do not include a file specification, the precompiler creates an
object file with the same file name as the source file and the file extension .obj.
You can specify the OBJECT qualifier for any language except Ada.

The OBJECT qualifier is the default.

OPTIMIZATION_LEVEL=optimization_options
Specifies the optimizer strategy to be used to process all queries within your
SQL module language program. Select the:

• AGGRESSIVE_SELECTIVITY option if you expect a small number of rows
to be selected.

• DEFAULT option to accept the Oracle Rdb defaults: FAST_FIRST and
DEFAULT SELECTIVITY.

4–22 SQL Precompiler

• FAST_FIRST option if you want your program to return data to the user as
quickly as possible, even at the expense of total throughput.

• SAMPLED_SELECTIVITY option to use literals in the query to perform
preliminary estimation on indices.

• TOTAL_TIME option if you want your program to run at the fastest
possible rate, returning all the data as quickly as possible. If your
application runs in batch, accesses all the records in a query, and performs
updates or writes reports, you should specify TOTAL_TIME.

You can select either the TOTAL_TIME or the FAST_FIRST option in
conjunction with either the AGGRESSIVE_SELECTIVITY or SAMPLED_
SELECTIVITY option. Use a comma to separate the keywords and enclosed
the list in parentheses.

The following example shows how to use the OPTIMIZATION_LEVEL
qualifier:

$ SQL$PRE/SQLOPTIONS=OPTIMIZATION_LEVEL=(TOTAL_TIME,SAMPLED_SELECTIVITY) APPCODE.SC

Any query that explicitly includes an OPTIMIZE WITH, or OPTIMIZE_FOR
clause is not affected by the settings established using the OPTIMIZATION_
LEVEL qualifier.

You affect the optimizer strategy of static SQL queries with the optimization
level qualifier; however, the default optimizer strategy set by the
OPTIMIZATION_LEVEL option can be overridden by the default optimizer
strategy set in a top-level SELECT statement.

In contrast, the SET OPTIMIZATION LEVEL statement specifies the query
optimization level for dynamic SQL query compilation only; the statement does
not affect the SQL compile-time environment nor does it affect the run-time
environment of static queries.

optimization-options
Specifies the optimizer strategy to be used for processing all queries within
your SQL precompiler program.

SQLOPTIONS= (PASSWORD_DEFAULT=password)
Specifies the user’s password at compile time.

If you use the USING DEFAULT clause of the DECLARE ALIAS statement,
you use this qualifier to pass the compile-time user’s password to the program.

SQL Precompiler 4–23

pre-host-file-spec
The file specification for a host language source file that contains embedded
SQL statements. The default file extension for the source file depends on the
host language specified in the language qualifier.

Language Default File Extension

Ada .sqlada
C .sc
COBOL .sco
FORTRAN .sfo
Pascal .spa
PL/I .spl

If the host language is Ada or COBOL, the file name (without the file
extension) cannot be longer than 27 characters.

The precompiler command line allows a list of host language source files in this
argument, but only processes the first file specification it encounters. If you
specify a list of files, the precompiler:

• Gives a warning message that only the first file on the line will be
precompiled

• Ignores the other file specifications and passes them along to the host
language compiler in the same order as they appeared on the precompiler
command line

For instance, the following command lines are valid, but only the MY_FILE
host language file is precompiled:

$ SQLPRE/PLI/LIS/DEB MY_FILE+MY_TLB_1/LIB+MY_TLB_2/LIB
$ SQLPRE/PASCAL MY_FILE,MY_OTHER_FILE
$ SQLPRE/COB/DEB MY_FILE,MY_NODB_FILE
$ SQLPRE/CC MY_FILE+REST_OF_APPL+APPL_TLB/LIB

For the previous command lines, the precompiler passes the following
corresponding command lines to the host language compiler:

$ PLI/LIS/DEB MY_FILE.PLI;n+MY_TLB_1/LIB+MY_TLB_2/LIB/NOG_FLOAT
$ PAS MY_FILE.PAS;n,MY_OTHER_FILE
$ COB/DEB MY_FILE.COB;n,MY_NODB_FILE
$ CC MY_FILE.C;n+REST_OF_APPL+APPL_TLB/LIB/NOG_FLOAT

The ;n notation signifies the version number of the host language file generated
by the SQL precompiler.

4–24 SQL Precompiler

pre-lang-qualifiers
Refers to the host language in which the program containing embedded
SQL procedures is written. You must supply a language qualifier. The host
language qualifier values are ADA, CC, CC=VAXC, CC=DECC, COBOL,
FORTRAN, PASCAL, and PLI.

The following statements apply to the CC SQL precompiler switch:

• The CC=VAXC switch instructs the precompiler to compile the source as a
VAXC source. If the VAXC compiler is not installed, the DECC compiler is
used with the /STANDARD=VAXC host language compiler switch.

• The CC=DECC switch instructs the precompiler to compile the source as
a DECC source. If the DECC compiler is not installed, you will get a DCL
error.

• The default keyword, either VAXC or DECC, is based on your system
configuration. If the VAXC compiler is installed on your system, VAXC
is the default keyword. If the DECC compiler is installed, DECC is the
default keyword. If both compilers are installed, the default is based on
whichever C compiler your system manager has specified.

pre-qualifiers
Refers to the optional qualifiers allowed on the SQL precompiler command line.

SQLOPTIONS= (PRAGMA)
SQLOPTIONS= (NOPRAGMA)
Using the IDENT keyword with the PRAGMA qualifier allows the user to
pass a text string to the SQL Precompiler to be written to the Object Module
Header. This is a way to note the generation of the compiler module.

If the PRAGMA (IDENT ...) clause is used as part of the DECLARE MODULE
statement, then that value will override any value used on the command line.

The ANALYZE/OBJECT and LIBRARY command can be used to display this
ident string, and the value will be displayed in LINKER map files.

OpenVMS limits the IDENT string to a 15 octet string. If the string is longer
than this (even with trailing spaces) then an error will be reported by the SQL
precompiler.

The following example demonstrates the use of the qualifier to establish the
generation of the compiler module.

$ SQL$PRE/CC TEST/SQLOPTION=(PRAGMA=IDENT="v1.2-32")

SQL Precompiler 4–25

SQLOPTIONS= (QUERY_CPU_TIME_LIMIT=total-seconds)
Limits the amount of CPU time used to optimize a query for execution. If the
query is not optimized and prepared for execution before the CPU time limit is
reached, an error message is returned.

The default is unlimited time for the query to compile. Dynamic SQL options
are inherited from the compilation qualifier.

SQLOPTIONS= (QUERY_ESTIMATES)
SQLOPTIONS= (NOQUERY_ESTIMATES)
Specifies whether or not SQL returns the estimated number of rows and
estimated number of disk I/O operations in the SQLCA structure. If you
specify the QUERY_ESTIMATES keyword, SQL returns the estimated
number of rows in the field SQLCA.SQLERRD[2] and the estimated number
of disk I/O operations in the field SQLCA.SQLERRD[3]. The value of
SQLCA.SQLERRD[2] and SQLCA.SQLERRD[3] is normally 0 after you
execute an OPEN statement for a table.

The SQLOPTIONS=QUERY_ESTIMATES qualifier is the default.

SQLOPTIONS= (QUERY_MAX_ROWS=total-rows)
Limits the number of records returned during query processing by counting the
number of rows returned by the query and returning an error message if the
query exceeds the total number of rows specified.

The default is an unlimited number of record fetches. Dynamic SQL options
are inherited from the compilation qualifier.

SQLOPTIONS= (QUERY_TIME_LIMIT=total-seconds)
Limits the number of records returned during query processing by counting the
number of seconds used to process the query and returning an error message if
the query exceeds the total number of seconds specified.

The default is unlimited time for the query to compile. Dynamic SQL options
are inherited from the compilation qualifier.

SQLOPTIONS= (QUIET_COMMIT)

SQLOPTIONS= (NOQUIET_COMMIT)
QUIET COMMIT disables error reporting for the COMMIT and ROLLBACK
statements if either statement is executed when no transaction is active.

By default, if there is no active transaction, SQL will raise an error when
COMMIT or ROLLBACK is executed. This default, (NOQUIET_COMMIT),
is retained for backward compatibility for applications that wish to detect

4–26 SQL Precompiler

the situation. If QUIET_COMMIT is specified, a COMMIT or ROLLBACK
executes successfully when there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK
statements are always ignored if no transaction is active.

SQLOPTIONS= (ROLLBACK_ON_EXIT)
Rolls back outstanding transactions when a program exits from SQL.

On OpenVMS, outstanding transactions are committed when a program exits
from SQL by default. Therefore, if you want to roll back changes, specify this
qualifier on the command line.

SQLOPTIONS= (TRANSACTION_DEFAULT = IMPLICIT)
SQLOPTIONS= (TRANSACTION_DEFAULT = DISTRIBUTED)
SQLOPTIONS= (NOTRANSACTION_DEFAULT)
Specifies when SQL starts a transaction and how SQL handles default
distributed transactions. You can specify the following options:

• SQLOPTIONS = (TRANSACTION_DEFAULT = IMPLICIT)

Causes SQL to start a transaction when you issue either a SET
TRANSACTION statement or the first executable SQL statement in a
session.

• SQLOPTIONS = (TRANSACTION_DEFAULT = DISTRIBUTED)

Causes SQL to use the distributed transaction identifier (TID) for the
default distributed transaction established by the DECdtm system service
SYS$START_TRANS. Using this option eliminates the need to declare
context structures in SQL precompiled programs and to use the USING
CONTEXT clause in embedded SQL statements. Because it closes all
cursors, it also eliminates the need to call the SQL_CLOSE_CURSORS
routine.

You must explicitly call the DECdtm system services when you use this
option.

This option provides support for the Structured Transaction Definition
Language (STDL) of the Multivendor Integration Architecture (MIA)
standard.

If you specify the USING CONTEXT clause in embedded SQL statements,
you must declare a context structure.

SQL Precompiler 4–27

• SQLOPTIONS=(NOTRANSACTION_DEFAULT)

Causes SQL not to start a transaction unless you execute a SET
TRANSACTION statement. If you use this qualifier and issue an
executable statement without first issuing a SET TRANSACTION
statement, SQL returns an error.

The default is SQLOPTIONS = (TRANSACTION_DEFAULT = IMPLICIT).

SQLOPTIONS= (USER_DEFAULT=username)
Specifies the user name at compile time.

If you use the USER DEFAULT clause of the DECLARE ALIAS statement, you
use this qualifier to pass the compile-time user name to the program.

SQLOPTIONS= WARN
SQLOPTIONS= NOWARN
Specifies whether or not the SQL precompiler writes informational and
warning messages to the preprocessed host language source file and to
SYS$ERROR and SYS$OUTPUT (if different from SYS$ERROR). The WARN
qualifier accepts the following options:

• [NO]WARNING

Specifies whether or not the SQL precompiler writes informational and
warning messages to your terminal, a list file, or both.

• [NO]DEPRECATE

Specifies whether or not the SQL precompiler writes diagnostic messages
about deprecated features.

Deprecated features are features that are currently allowed but will not
be allowed in future versions of SQL; that is, they will be obsolete. For
example, one deprecated feature is the use of obsolete keywords such as
VERB_TIME instead of VERB TIME. A complete list of deprecated features
appears on line in the interactive SQL Help utility.

The SQLOPTIONS=WARN qualifier is equivalent to the SQLOPTIONS=WARN=(WARNING, DEPRECATE
qualifier. The SQLOPTIONS=NOWARN qualifier is equivalent to the
SQLOPTIONS=WARN=(NOWARNING, NODEPRECATE) qualifier.

You can specify the SQLOPTIONS=WARN=WARNING qualifier if you prefer
to have all warning messages except those about deprecated features. You can
specify the SQLOPTIONS=WARN=(NOWARNING, DEPRECATE) qualifier if
you prefer the deprecated feature messages only.

4–28 SQL Precompiler

warning-option
Specifies whether the SQL precompiler writes warning or diagnostic messages
to your terminal, a list file, or both. Use either or both the [NO]WARNING
or [NO]DEPRECATE options with the WARN qualifier. If you specify only a
single warning option, you do not need to use parentheses.

Usage Notes

• Precompilers are restricted to 32767 bytes or less on the command line.

SQL Precompiler 4–29

4.4 Host Language Variable Declarations Supported by the
Precompiler

The SQL precompiler recognizes only a subset of valid host language variable
declarations. If you refer to a variable declaration that SQL does not recognize
in an embedded SQL statement, the precompiler generates a fatal error when
it encounters that reference.

Oracle Rdb databases and the various host languages supported by the SQL
precompiler do not necessarily support the same set of data types. The
precompiler recognizes host language variable declarations that are equivalent
to SQL data types plus a subset of other host language variable declarations.

• For host language variable declarations of data types that are equivalent
to SQL data types, the precompiler passes values directly between the
database and the host language variable.

• Host language floating point data types will be interpreted as having
representations as determined by the /FLOAT qualifier on the precompiler
command line and individual language rules. These rules are discussed in
the host language-specific sections that follow. In these sections, selects
will be shown from a table defined as follows:

CREATE TABLE TESTTBL (
KEYFIELD CHAR(10) PRIMARY KEY,
FLOAT1 REAL,
FLOAT2 DOUBLE PRECISION);

• For each host language, the precompiler also supports a limited number
of host language variable declarations that do not correspond to SQL
data types. SQL converts database values to the host language data type
and host language values to the supported data type. SQL makes this
conversion only for a subset of valid host language declarations.

Table 4–2 shows the date-time data types that the precompiler supplies.

4–30 SQL Precompiler

Table 4–2 Precompiler Date-Time Data Mapping

Module Language and
Interactive SQL Precompiler

DATE SQL_DATE
DATE_ANSI SQL_DATE_ANSI
DATE_VMS SQL_DATE_VMS
TIME SQL_TIME
TIMESTAMP SQL_TIMESTAMP
INTERVAL YEAR SQL_INTERVAL (YEAR)
INTERVAL YEAR TO
MONTH

SQL_INTERVAL (YEAR TO MONTH)

INTERVAL MONTH SQL_INTERVAL (MONTH)
INTERVAL DAY SQL_INTERVAL (DAY)
INTERVAL DAY TO HOUR SQL_INTERVAL (DAY TO HOUR)
INTERVAL DAY TO
MINUTE

SQL_INTERVAL (DAY TO MINUTE)

INTERVAL DAY TO
SECOND

SQL_INTERVAL (DAY TO SECOND)

INTERVAL HOUR SQL_INTERVAL (HOUR)
INTERVAL HOUR TO
MINUTE

SQL_INTERVAL (HOUR TO MINUTE)

INTERVAL HOUR TO
SECOND

SQL_INTERVAL (HOUR TO SECOND)

INTERVAL MINUTE SQL_INTERVAL (MINUTE)
INTERVAL MINUTE TO
SECOND

SQL_INTERVAL (MINUTE TO SECOND)

INTERVAL SECOND SQL_INTERVAL (SECOND)

• For all other host language variable declarations, the precompiler generates
an error when it encounters a reference to them in embedded SQL
statements.

The following sections list the subset of valid host language variable
declarations that SQL recognizes. The sections also give examples of valid
declarations that correspond to each of the SQL data types and examples of
other declarations the precompiler does and does not recognize.

SQL Precompiler 4–31

Note

The ANSI/ISO SQL standard specifies that variables used in embedded
SQL statements must be declared within a pair of embedded SQL
BEGIN DECLARE . . . END DECLARE statements. The Oracle Rdb
SQL precompiler does not enforce this restriction. If you use the
BEGIN DECLARE . . . END DECLARE statements, SQL generates a
warning message when it encounters a variable declared outside of a
BEGIN DECLARE . . . END DECLARE block.

If ANSI/ISO SQL compliance is important for your application, you
should include all declarations for variables used in embedded SQL
statements within a BEGIN DECLARE . . . END DECLARE block.
See the BEGIN DECLARE Statement on the SQL module language for
more information on the BEGIN DECLARE statement.

If you do not declare character variables using syntax that specifies a
character set or by defining the RDB$CHARACTER_SET logical name,
the SQL precompiler uses the UNSPECIFIED character set. When you use
the UNSPECIFIED character set, the precompiler does not check to see if the
character set of the variables matches the character sets of the database. For
more information regarding the logical name, see Section 2.1.11.

The RDB$CHARACTER_SET logical name is deprecated and will not be
supported in a future release.

The following sections do not discuss the requirements for declaring host
language variables used as actual parameters in host language program calls
to SQL module language procedures. Such host language variable declarations
must correspond exactly to the corresponding formal parameter declarations in
the SQL module file. If they do not, the program can generate unpredictable
results at run time. See Chapter 3 for more information on the SQL module
language.

4.4.1 Specifying Length of Character Parameters

To ensure that you specify the length of character variables correctly, use the
following guidelines:

• For the C language, any character variables that correspond to character
data type columns must be defined as the length of the longest valid
column value in octets, plus 1 octet to allow for the null terminator.

4–32 SQL Precompiler

• For other languages supported by the SQL precompiler, any character
variables that correspond to character data type columns must be defined
as the length of the longest valid column value in octets.

• When calculating the length of the longest valid column value, you must
take into consideration whether the SQL precompiler interprets the length
of columns in characters or octets. A program can control how the SQL
precompiler interprets the length of columns in the following ways:

The CHARACTER LENGTH clause of the DECLARE MODULE
statement

The DIALECT clause of the DECLARE MODULE statement

For dynamic SQL, the SET CHARACTER LENGTH statement

See Table 2–2 for information about the number of octets used for one
character in each character set.

Assume that you create the database MIA_CHAR_SET with the following
character sets:

• Default character set: DEC_KANJI

• National character set: KANJI

• Identifier character set: DEC_KANJI

Assume that the database contains the table COLOURS and that the columns
in that table are defined as shown in the following example:

SQL> SHOW DOMAINS;
User domains in database with filename MIA_CHAR_SET
ARABIC_DOM CHAR(8)

ISOLATINARABIC 8 Characters, 8 Octets
DEC_KANJI_DOM CHAR(16)
GREEK_DOM CHAR(8)

ISOLATINGREEK 8 Characters, 8 Octets
HINDI_DOM CHAR(8)

DEVANAGARI 8 Characters, 8 Octets
KANJI_DOM CHAR(8)

KANJI 4 Characters, 8 Octets
KATAKANA_DOM CHAR(8)

KATAKANA 8 Characters, 8 Octets
MCS_DOM CHAR(8)

DEC_MCS 8 Characters, 8 Octets
RUSSIAN_DOM CHAR(8)

ISOLATINCYRILLIC 8 Characters, 8 Octets
SQL> --
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

SQL Precompiler 4–33

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(8) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(16) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

If your SQL precompiled program specifies CHARACTER LENGTH
CHARACTERS, you would declare the corresponding variables as shown
in the following C example:

.

.

.
/* Specify CHARACTER LENGTH CHARACTERS in the DECLARE MODULE statement.
In addition, specify the IDENTIFIER, NATIONAL, and DEFAULT character sets.
*/
exec sql DECLARE MODULE CCC_COLOURS

NAMES ARE DEC_KANJI
NATIONAL CHARACTER SET KANJI
SCHEMA RDB$SCHEMA
AUTHORIZATION SQL_SAMPLE
CHARACTER LENGTH CHARACTERS
DEFAULT CHARACTER SET DEC_KANJI
ALIAS RDB$DBHANDLE;

/* If you do not specify character sets in the DECLARE ALIAS statement, SQL
* uses the character sets of the compile-time database.
*/
exec sql DECLARE ALIAS FILENAME mia_char_set;

/* When you declare a parameter with lowercase char, SQL considers the
* character set unspecified and allocates single-octet characters.
*/
char english_p[31];

4–34 SQL Precompiler

/* When you specify the character set, SQL allocates single- or multi-octet
* characters, depending upon the character set.
*/
char CHARACTER SET DEC_MCS french_p[31];
char CHARACTER SET KANJI japanese_p[31];
char CHARACTER SET DEC_KANJI dec_kanji_p[31];

.

.

.

4.4.2 Supported Ada Variable Declarations

SQL lets you declare host language variables directly or by calling the Ada
package, SQL_STANDARD.

You must use the SQL_STANDARD package if you want to conform to the
ANSI/ISO SQL standard. This package defines the data types that are
supported by the ANSI/ISO SQL standard. To use the package, first copy the
file SYS$COMMON:[SYSLIB]SQL$STANDARD.ADA to your own Ada library,
and then compile the package.

The package SQL_STANDARD declares the following ANSI-standard data
types:

• CHAR

• SMALLINT

The data type SMALLINT contains one subtype: INDICATOR_TYPE.

• INT

• REAL

• DOUBLE_PRECISION

• SQLCODE_TYPE

The data type SQLCODE_TYPE contains two subtypes: NOT_FOUND and
SQL_ERROR.

• SQLSTATE_TYPE

If ANSI/ISO SQL compliance is not important for your application, you can
declare host language variables directly. The following list describes the
variable declaration syntax that the SQL precompiler supports in Ada:

• Standard package data types

STRING

SQL Precompiler 4–35

CHARACTER

SHORT_SHORT_INTEGER

SHORT_INTEGER

INTEGER

FLOAT

By default, Ada recognizes the FLOAT data type as an F-
floating representation of floating-point data. However, Ada
also allows you to override the default and specify that FLOAT
denotes an IEEE S-Floating representation by using the FLOAT_
REPRESENTATION(IEEE_FLOAT) pragma or using ACS CREATE
LIBRARY or SET PRAGMA commands. This default can also be
overridden at installation time. SQL does not recognize whether or not
you override the F-floating default for the FLOAT data type. If you
do override the FLOAT default, you will get Ada compile-time errors.
These compile-time errors can be overcome by using a /FLOAT=IEEE_
FLOAT qualifier with the SQL$PRE command.

To avoid problems with the ambiguity in the FLOAT data type, use the
SYSTEM package F_FLOAT and IEEE_SINGLE_FLOAT data types.

LONG_FLOAT

By default, Ada recognizes the LONG_FLOAT data type as a G-
floating representation of floating-point data. However, Ada also
allows you to override the default and specify that LONG_FLOAT
denotes an IEEE S-Floating representation by using the FLOAT_
REPRESENTATION(IEEE_FLOAT) pragma or using ACS CREATE
LIBRARY or SET PRAGMA commands. This default can also
be overridden at installation time. In addition, if the FLOAT_
REPRESENTATION is VAX_FLOAT (the default), Ada allows you
to specify that the LONG_FLOAT data type be represented by a D-
Floating format by specifying the LONG_FLOAT(D_FLOAT) pragma.
SQL does not recognize whether or not you override the G-floating
default for the LONG_FLOAT data type. If you do override the
LONG_FLOAT default, you will get Ada compile-time errors. These
compile-time errors can be overcome by using a /FLOAT qualifier with
the SQL$PRE command to specify either D_FLOATING or IEEE_
FLOATING as appropriate.

4–36 SQL Precompiler

To avoid problems with the ambiguity in the LONG_FLOAT data type,
use the SYSTEM package G_FLOAT, D_FLOAT, and IEEE_DOUBLE_
FLOAT data types.

Note

SQL$PRE will issue a warning (%SQL-W-NOFLOAT) if you use a
/FLOAT qualifier with an /ADA qualifier because the ADA command
does not have a /FLOAT qualifier. But if you use a pragma FLOAT
REPRESENTATION to override the default floating point formats
you must use the /FLOAT qualifier to let SQL$PRE know about
this floating point format since it does not recognize the pragma.
Simply ignore the warning. In addition to supporting IEEE formats,
SQL$PRE allows the default G_FLOAT format for 64-bit floating point
types to be overridden using a combination of the pragma FLOAT
REPRESENTATION specifying VAX_FLOAT and the pragma LONG
FLOAT specifying D_FLOAT. To use this combination, specify an
SQL$PRE qualifier of /FLOAT=D_FLOAT.

The following example shows an Ada program with embedded SQL that
will work correctly with SQL$PRE/ADA/FLOAT=IEEE:

PRAGMA FLOAT REPRESENTATION IEEE_FLOAT;
WITH SYSTEM; USE SYSTEM;
WITH STANDARD; USE STANDARD;
WITH SQL_STANDARD; USE SQL_STANDARD;
. . .
PROCEDURE TESTIT IS
EXEC SQL BEGIN DECLARE SECTION;
KEYFIELD : STRING(1..10);
FLOATER : LONG_FLOAT; -- package STANDARD
SQLFLOATER : REAL; -- package SQL_STANDARD
GFLOATER : G_FLOAT; -- package SYSTEM
SFLOATER : IEEE_SINGLE_FLOAT; -- package SYSTEM
TFLOATER : IEEE_DOUBLE_FLOAT; -- package SYSTEM
EXEC SQL END DECLARE SECTION;
. . .
BEGIN
. . .
KEYFIELD := "1.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SQLFLOATER, :GFLOATER

WHERE KEYFIELD = :KEYFIELD;
. . .
KEYFIELD := "2.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SFLOATER, :TFLOATER

WHERE KEYFIELD = "KEYFIELD;
. . .

SQL Precompiler 4–37

KEYFIELD := "3.0 ";
EXEC SQL SELECT FLOAT1, FLOAT2 INTO :FLOATER, TFLOATER

WHERE KEYFIELD = KEYFIELD;

• Date-time data types

The precompiler translates lines in a precompiled program that contain
any of the date-time data types.

Note

Oracle Rdb reserves the right to change the code generated in
translation of date-time data types at any time, without prior notice.

SQL_DATE, SQL_DATE_ANSI, SQL_DATE_VMS

SQL_TIME, SQL_TIMESTAMP

SQL_INTERVAL (DAY TO SECOND)

Use this data type for variables that represent the difference between
two dates or times. (Table 4–2 lists all the supported INTERVAL data
types.)

• SQL definition package

The precompiler generates a package that includes definitions for the
following data types if Ada object declarations refer to them:

SQL_VARCHAR_n

Use this data type for variables that correspond to VARCHAR and
LONG VARCHAR columns in a database, where n is the length
specified in the definition of the columns (always 16,383 characters for
LONG VARCHAR columns).

SQL declares a two-field Ada record when it encounters SQL_VARCHAR_n,
with one field, t, containing the character string, and the second field, l,
containing an integer denoting the length of the string.

You can refer to the l field to determine the actual length of a varying
character string, and refer to the t field to refer to the string itself.
This excerpt from the online sample program sql_all_datatypes.sqlada
refers to the l field to see if the value in an SQL_VARCHAR_n field is
null.

4–38 SQL Precompiler

.

.

.
-- Variables for main program use

type ALL_DATATYPES_RECORD_TYPE IS
record
.
.
.

VARCHAR_VAR : sql_varchar_40;
end record;

.

.

.

-- The following if statements evaluate the contents of main variables
-- and then set indicators as appropriate.

.

.

.
if all_datatypes_record.varchar_var.l = 0 then

indicator_group(7) := -1; end if;

SQLDA_ACCESS

Specifying this data type declares an SQLDA structure. It offers an
advantage over an embedded INCLUDE SQLDA statement because
you can use it in more than one declaration to declare multiple SQLDA
structures.

• CDD_TYPES package data types (must specify WITH CDD_TYPES)

DATE_TIME_DATATYPE (Oracle Rdb recommends that you use
SQL_TIMESTAMP)

SHORT_INTEGER_ARRAY (for indicator arrays only)

• SYSTEM package data types (must specify WITH SYSTEM)

D_FLOAT

G_FLOAT

F_FLOAT

IEEE_SINGLE_FLOAT

IEEE_DOUBLE_FLOAT

• Arrays

Single-dimension arrays are supported to declare an indicator array to
refer to a structure in SQL statements. The elements of the array must be
declared as word integers (SHORT_INTEGER).

SQL Precompiler 4–39

Character arrays are supported as types or subtypes but cannot refer to
derived types.

SQL does not allow references to unconstrained arrays.

• Types

The precompiler recognizes types for all the preceding data types plus
records, derived types, and arrays.

Records can refer to any recognized type.

Derived types (NEW keyword) can refer to any recognized type. SQL
allows but ignores range constraints in derived types.

SQL does not allow references to types that use discriminants in any
way or to access types. SQL does not allow references to integer (RANGE
keyword), floating-point (DIGITS keyword), or fixed-point (DELTA keyword)
types.

• Subtypes

Subtypes can refer to any recognized type. SQL allows but ignores range
constraints in subtypes.

• Assignments from expressions in declarations

• Context structure types

When you write applications for the Ada precompiler, you should declare a
context structure by declaring a variable of data type SQLCONTEXT_REC
instead of declaring a structure. When you declare a variable with the
data type SQLCONTEXT_REC, the Ada precompiler generates a context
structure for you. For example, you declare the variable using the following
code:

context_struc.sqlcontext_ver := 1;
context_struc.sqlcontext_tid.sqlcontext_tid_type := 1
context_struc.sqlcontext_tid.sqlcontext_tid_len := 16;
context_struc.sqlcontext_tid.sqlcontext_tid_value(1) := 0;
context_struc.sqlcontext_tid.sqlcontext_tid_value(2) := 0;
context_struc.sqlcontext_tid.sqlcontext_tid_value(3) := 0;
context_struc.sqlcontext_tid.sqlcontext_tid_value(4) := 0;
context_struc.sqlcontext_end := 0;

The following example illustrates some Ada declarations to which the SQL
precompiler lets SQL statements refer:

4–40 SQL Precompiler

-- Record with STANDARD, SYSTEM, and SQL package data types:
type ALL_DATATYPES_RECORD_TYPE IS

record
CHAR_VAR : string(1..10);
SMALLINT_VAR : short_integer;
INTEGER_VAR : integer;
REAL_VAR : system.F_float;
DOUBLE_PREC_VAR : system.G_float;
BIN_DATE_VAR : sql_date;
VARCHAR_VAR : sql_varchar_40;

end record;

ALL_DATATYPES_RECORD : all_datatypes_record_type;

-- Derived type (SQL ignores RANGE specification):
type my_int is new integer range 1..20000;

-- Record using derived type:
type p_type is

record
pnum : string(1..6);
pname : string(1..20);
color : string(1..6);
weight : my_int;
city : string(1..20);
end record;

p : p_type;

-- Indicator structure for handling null values:
type INDICATOR_GROUP_TYPE is array(1..7) of short_integer;
INDICATOR_GROUP : indicator_group_type := (0,0,0,0,0,0,0);

-- Indicator arrays:
IND2 : array (1..5) of short_integer;
subtype SUB_SHORT_INT is short_integer range -1..2000;
type MY_SUB_IND_TYPE is array(1..5) of SUB_SHORT_INT;
IND4 : array(1..5) of SUB_SHORT_INT;
ind5 : MY_SUB_IND_TYPE;

-- Character array:
CHAR1 : array(1..20) of character;

-- Character array referring to subtype:
subtype X is character;
type CHAR2 is array(1..20) of X;
P : CHAR2;

Here are examples of invalid declaration syntax. The comment preceding each
declaration notes the reason an SQL statement cannot refer to the variable
specified by the declaration or to a variable dependent on the declaration.

SQL Precompiler 4–41

-- Enumerated type:
type ENUM_TYPE is (T1, T2, T3);
ENUM_TYPE_OBJ : ENUM_TYPE;

-- Integer type (RANGE allowed only in derived type or subtype):
type INTEGER_TYPE is range 1..20;
INTEGER_TYPE_OBJ : INTEGER_TYPE;

-- Type with DIGITS:
type FLOAT_TYPE is digits 10;
FLOAT_TYPE_OBJ : FLOAT_TYPE;

-- Access type:
type ACCESS_TYPE is access integer;
ACCESS_TYPE_OBJ : ACCESS_TYPE;

-- Discriminants in a record declaration:
type DISCR(X, Y, Z : integer := (X + 20)/2; W : natural) is

record
R1 : array(1..W) of character;
R2 : integer := X;
end record;

DISCR_OBJ : DISCR;

-- Variant records
type VAR_REC is

record
I : integer;
case I is

when 1 =>
X : integer;

when (3*j) =>
Y : integer;

when others
case J is

when 1 =>
Z1 : integer;

when 2 =>
Z2 : integer;

end case
end case
end record;

VAR_REC_OBJ : VAR_REC;

-- Multiple dimensioned array:
type MULDIM_ARR is array(1..20, 1..20) of integer;
MULDIM_ARR_OBJ : MULDIM_ARR;

-- Unconstrained array:
type UNC_ARRAY is array(integer range <>) of integer;
UNC_ARRAY_OBJ : UNC_ARRAY;

-- Unrecognized declaration of array (not SHORT_INT):
IND4 : array(1..5) of short_short_int;

4–42 SQL Precompiler

Table 4–3 gives examples of Ada variable declarations that SQL supports for
each SQL data type.

Table 4–3 Ada Declarations for SQL Data Types

SQL Example Ada Example

CHAR (10) STR1 : SQL_STANDARD.CHAR(1..10);1

VARCHAR (80) STR2 : SQLVARCHAR_80;2

LONG VARCHAR STR3 : SQLVARCHAR_16383;2

TINYINT (2)
TINYINT

Not supported
NUM1 : SHORT_SHORT_INTEGER;

SMALLINT (2)
SMALLINT

Not supported
NUM1 : SQL_STANDARD.SMALLINT;1

INTEGER (2)
INTEGER

Not supported
NUM2 : SQL_STANDARD.INT;1

BIGINT (2)
BIGINT

Not supported
Not supported

FLOAT (6)
FLOAT (25)

NUM4 : SQL_STANDARD.REAL;1

NUM4 : SQL_STANDARD.DOUBLE_PRECISION;1

REAL NUM5 : SQL_STANDARD.REAL;1

DOUBLE PRECISION NUM6 : SQL_STANDARD.DOUBLE_PRECISION;1

DATE DATENUM1 : SQL_DATE;
DATE ANSI DATENUM2 : SQL_DATE_ANSI;
DATE VMS DATENUM3 : SQL_DATE_VMS;
TIME DATENUM4 : SQL_TIME(0);
TIMESTAMP DATENUM5 : SQL_TIMESTAMP(2);
INTERVAL DAY TO
HOUR

DATENUM6 : SQL_INTERVAL (DAY TO HOUR);3

LIST OF BYTE
VARYING

STR4 : SQL_STANDARD.CHAR(1..8);4

1The source file must explicitly use the SQL$STANDARD.ADA package to specify these types.
2The SQL precompiler defines the $SQL_VARCHAR data type as part of the package it generates
during processing.
3Table 4–2 lists all the supported INTERVAL data types.
4This example shows how to retrieve the segmented string identifier, a pointer to the first element
of the list, using an 8-byte character string. To retrieve the values of individual elements of that
list, use host language variables of data type CHAR or VARCHAR.

SQL Precompiler 4–43

The online sample program sql_all_datatypes.sqlada provides examples of
declaring variables and using them in SQL statements. The program also
illustrates a variety of SQL data definition and data manipulation statements.
After SQL is installed, you can print, type, or search the program to find
sample code related to a variety of topics.

The following example shows the commands to precompile, link, and run the
sample program sql_all_datatypes.sqlada:

$ ACS CREATE LIBRARY [.ADALIB]
$ ACS SET LIBRARY [.ADALIB]
$ SQLPRE == "SQLPRE"
$ SQLPRE
INPUT FILE> sql_all_datatypes.sqlada/ADA
$! This LINK command requires that the logical name
$! LNK$LIBRARY is defined as SYS$LIBRARY:SQL$USER.OLB.
$ ACS LINK sql_all_datatypes sql_sql_all_datatypes.obj
$ RUN sql_all_datatypes.exe

.

.

.
This is the stored row

CHAR_COL: Begin end
SMALLINT_COL: -32768
INTEGER_COL: -2147483648
REAL_COL: 0.12346
DOUBLE_PRECISION_COL: 0.12345678901234
DATE_COL: 30-OCT-1987 09:00:00.00
VARCHAR_COL: This string is 39 characters in length.

.

.

.
This is the row after update

CHAR_COL: NULL
SMALLINT_COL: 32767
INTEGER_COL: 2147483647
REAL_COL: 0.12346
DOUBLE_PRECISION_COL: 0.12345678901234
DATE_COL: 10/30/87 09:00:00
VARCHAR_COL: This string is 39 characters in length.

Note

When using the Ada precompiler, you must have unique procedure
names for each subprogram. If your program uses the same procedure
names for various subprograms, you have several alternatives:

4–44 SQL Precompiler

• Ideally, use the module language instead of precompiled Ada.
This restriction does not apply when using module language. See
Chapter 3 for more information on SQL module language.

• Alternatively, you can use the separate compile-time feature of Ada.
This feature precompiles all subprograms separately. However, if
you use this alternative, SQL statements in the subprogram will
be unable to reference types, variables, and so forth declared in the
main program unit because they will be unknown.

• Another alternative is to make sure that all names used in SQL
statements are unique. If your application must conform to the
ANSI standard, the names of all host language variables used in
SQL statements must be unique in the file.

4.4.3 Supported C Variable Declarations

Note

C is a case-sensitive language. The names of objects declared in a C
program are case sensitive, but the names of SQL tables and other
names are not case sensitive. Therefore, you must be careful about
C constructs that you specify in SQL statements. These constructs
include variable names and labels of program sections. See the Oracle
Rdb Guide to SQL Programming for more information about declaring
C variables.

The following list describes the variable declaration syntax for character data
types that the SQL precompiler supports in C:

• char x[n]

• char *x, assumes LONG VARCHAR type (that is, char x[16383])

• char CHARACTER SET character-set-name clause

The CHARACTER SET character-set-name clause is optional.

• $SQL_VARCHAR (n)

• $SQL_VARCHAR (n) CHARACTER SET character-set-name

SQL Precompiler 4–45

The CHARACTER SET clause is optional.

For information about the supported character sets, see Section 2.1.

The following list describes the variable declaration syntax that the SQL
precompiler supports in C:

• Data type keywords (see Table 4–4)

• Storage class identifiers and modifiers

• struct

• union

• typedef

• Initial value assignments

• Arrays

Only single-dimension arrays are supported and only to declare an
indicator array for use with a reference to a structure in SQL statements.
Furthermore, the size of the array must be specified explicitly. Although
you can use any data type for indicator array elements, Oracle Rdb
recommends that you use variables of the data type integer, such as int or
short.

• Pointers

Only a single level of pointer variables are supported and only those that
point to elementary data types.

Because C pointer variables cannot specify length attributes, SQL
sometimes must allocate the largest possible piece of memory to process
statements that refer to char pointer variables. SQL cannot determine the
length of char pointer variables and allocates 16,383 bytes of memory for
each variable in the following cases:

The SQL statement contains a concatenated value expression or a
substring.

The SQL statement refers to the char pointer variable in a predicate,
such as WHERE EMP_ID = :POINTER_VAR.

The SQL statement converts the contents of the char pointer variable
to a numeric data type in the database.

Avoid the use of char pointer variables in these cases because such a large
memory allocation for char pointer variables wastes memory and degrades
performance, especially for remote database access.

4–46 SQL Precompiler

• Valid declaration syntax
The following are examples of valid declaration syntax:

a_var[10];

$SQL_VARCHAR(10) x,y,z;

int SQLCODE;

struct
{
char b_var[5];
short int c_var;
} a_record;

union
{
char string_date[17];
struct

{
char year_var1[2];
char year_var2[2];
char month_var[2];
char day_var[2];
char hour_var[2];
char minute_var[2];
char second_var[2];
char hundredth_var[2];
} date_group;

} date_union;

int indicator_item[2];

globaldef double c_var;

static d_var;

char *x;

• Invalid declaration syntax

Table 4–4 Supported C Datatypes

C type or
typedef SQL type Comments and Restrictions

char CHARACTER
char * LONG VARCHAR Assumed to be VARCHAR (16383)

(continued on next page)

SQL Precompiler 4–47

Table 4–4 (Cont.) Supported C Datatypes

C type or
typedef SQL type Comments and Restrictions

char [n] CHARACTER n must be be an integer literal;
#define names or expressions are
not supported.

int INTEGER Cannot be specified as unsigned.
short SMALLINT Cannot be specified as unsigned.
short int INTEGER Cannot be specified as unsigned.
long int INTEGER Cannot be specified as unsigned.
float REAL
double DOUBLE PRECISION
enum INTEGER
long INTEGER On OpenVMS the data type long

is 32 bits
int8 TINYINT Requires #include <ints.h>

int16 SMALLINT Requires #include <ints.h>

_ _int16 SMALLINT
int32 INTEGER Requires #include <ints.h>

_ _int32 INTEGER
int64 BIGINT Requires #include <ints.h>

_ _int64 BIGINT
$SQL_VARCHAR (n) The CHARACTER SET clause is

optional.
SQL_DATE
SQL_DATE_ANSI
SQL_DATE_VMS
SQL_TIME
SQL_TIMESTAMP

The SQL precompiler will
transform the pseudo types in
natvie C datatypes

(continued on next page)

4–48 SQL Precompiler

Table 4–4 (Cont.) Supported C Datatypes

C type or
typedef SQL type Comments and Restrictions

SQL_INTERVAL (DAY TO
SECOND)

Use this data type for variables
that represent the difference
between two dates or times.
Table 4–2 lists all the supported
INTERVAL data types.

The precompiler accepts but ignores some syntax that it does not support if
the syntax is unimportant to SQL operations. For example, the precompiler
does not consider implementation of storage class modifiers important to SQL
operations. The precompiler accepts such modifiers in declarations but ignores
them. In contrast, implementation of data type syntax must be understood by
SQL for SQL to use the variable correctly. Therefore, lack of SQL support for
the enumerated data type means that the precompiler considers a declaration
invalid if it contains the keyword enum.
For all invalid declarations, the precompiler does not return an error following
the declarations themselves, but rather following the SQL statements that
refer to the declarations.
The precompiler does not recognize the #define directive. For example, defining
{ and } as BEGIN and END is not supported.
The following are examples of invalid declaration syntax. The comment
following each declaration notes the reason an SQL statement cannot refer
to the variable specified by the declaration or to a variable dependent on the
declaration.

int indicator_item[]; /* implicit dimension for array */
char func_ret(); /* function return status */
int mult_arr[5][10]; /* multidimensional array */
unsigned int uns_var; /* unsigned data */
int bit3 : 4, bit4 : 3; /* bit fields */
enum {a, b, c} enum_var; /* enumerated data type */
char *a_prt[5]; /* array of pointers */
int **x; /* two levels of pointers */
struct x_rec *x /* pointer to structures */
foo (char *x, int y) /* declarations within functions */

SQL Precompiler 4–49

Table 4–5 gives examples of C variable declarations that SQL supports for each
SQL data type.

Table 4–5 C Declarations for SQL Data Types

SQL Example C Example

CHAR (10) char str1[11]
SQL expects character strings to be in
ASCIZ format. You therefore declare a
char host language variable for a CHAR
column to be one character more than
the column size. (This allows space
for the null character that terminates
ASCIZ strings.) You can avoid this
restriction when you copy definitions
from the data dictionary by specifying the
FIXED argument in your SQL INCLUDE
statement, if you prefer.
The character set is UNSPECIFIED.

CHAR (10) CHARACTER SET
KANJI

char CHARACTER SET KANJI str[11]1

This data type has the same characteris-
tics as char, except that the character set
is that specified in the CHARACTER SET
clause.

VARCHAR(10) $SQL_VARCHAR(10)
When you use the typedef $SQL_
VARCHAR(max_length_of_varchar),
the SQL precompiler declares a struct
defining two subfields; len a short and
data a char field. In this example, 10
bytes of data follow the len. This is the
only C variable declaration supported by
SQL that is appropriate for storing and
passing binary data.
The character set is UNSPECIFIED.

1 See Section 4.4.1 for information about character length and the precompiler.

(continued on next page)

4–50 SQL Precompiler

Table 4–5 (Cont.) C Declarations for SQL Data Types

SQL Example C Example

VARCHAR(10) CHARACTER SET
KANJI

$SQL_VARCHAR(10) CHARACTER SET
KANJI str1

This data type has the same character-
istics as $SQL_VARCHAR, except that
the character set is that specified in the
CHARACTER SET clause.

LONG VARCHAR char str3[16384]
Because SQL expects character strings
to be in ASCIZ format, it uses the null
string terminator to determine the
length of the value stored in LONG
VARCHAR columns. You therefore declare
a host language variable for the LONG
VARCHAR data type as a fixed-length
char variable. The variable should be
large enough to contain the largest valid
string allowed in the column, plus one
character for the null terminator.
The character set is UNSPECIFIED.

TINYINT char num1
SQL supports scale factors on TINYINT
columns, but C does not.

SMALLINT short num1
SQL supports scale factors on SMALLINT
columns, but C does not. If the
SMALLINT column is scaled, declare
the variable as float rather than short.

INTEGER long num2
SQL supports scale factors on INTEGER
columns, but C does not. If the INTEGER
column is scaled, declare the variable as
double rather than int.

BIGINT int64 num3

1 See Section 4.4.1 for information about character length and the precompiler.

(continued on next page)

SQL Precompiler 4–51

Table 4–5 (Cont.) C Declarations for SQL Data Types

SQL Example C Example

FLOAT (6)
FLOAT (25)

float num4
double num4

REAL float num5
DOUBLE PRECISION double num6
DATE SQL_DATE datenum1
DATE ANSI SQL_DATE_ANSI datenum2
DATE VMS SQL_DATE_VMS datenum3
TIME SQL_TIME datenum4
TIMESTAMP SQL_TIMESTAMP datenum5
INTERVAL DAY TO HOUR SQL_INTERVAL (DAY TO HOUR)

datenum6
Table 4–2 lists all of the supported
INTERVAL data types.

LIST OF BYTE VARYING char datenum[8]
C does not support the LIST OF BYTE
VARYING data type. Declaring an 8-
byte character variable for a LIST OF
BYTE VARYING column gives SQL
sufficient space to store the segmented
string identifier that points to the first
element of the list. You can use host
language variables of data type CHAR
or VARCHAR to retrieve the values of
individual elements of that list.

The online sample program sql_all_datatypes.sc provides examples of declaring
variables and using them in SQL statements. The program also illustrates a
variety of SQL data definition and data manipulation statements. After SQL is
installed, search the program to find sample code related to a variety of topics.

The following restrictions apply to C variables:

• When you use the SQL precompiler for C and specify a C module language,
SQL usually translates C character strings as null-terminated strings. This
means that when SQL passes these character strings from the database
to the program, it reserves space at the end of the string for the null
character. When a program passes a character string to the database for
input, SQL looks for the null character to determine how many characters

4–52 SQL Precompiler

to store in the database. SQL stores only those characters that precede the
null character; it does not store the null character.

The only exception to this restriction is when you copy data definitions from
the data dictionary. The SQL INCLUDE statement gives you the option
of changing the default translation of character data to fixed-character
format, if you prefer. For more information, see the FIXED and NULL
TERMINATED BYTES arguments in the INCLUDE Statement.

If you use SQL module language instead of the SQL precompiler, you can
also specify that the length field be interpreted as a character count. For
more information, see the NULL TERMINATED CHARACTERS argument
in Section 3.2.

Because of the way SQL translates C character strings, you may encounter
problems with applications that pass binary data to and from the database
because any embedded zero byte is misinterpreted as a null string
terminator. To avoid these problems when you use the SQL precompiler for
C, use the $SQL_VARCHAR data type that SQL provides.

The SQL INCLUDE statement AS name clause allows you to rename the
dictionary record that you retrieve if you do not want the structure name
to be the same as the dictionary record name. For more information, see
the INCLUDE Statement.

• The SQL precompiler for the C language gives the following error message
when an SQL statement refers to a host language variable declared as a
character array whose declaration includes anything other than a straight
numeric value:

%SQL-F-BAD_ARRAY, Host variable address contains an array syntax error
in its declaration.

For example, this error occurs when the declaration contains a named
constant or an expression:

#define NAME_LEN (20)
#define ADDRESS_LEN (31)

char name [NAME_LEN + 1] /* This cannot be used */
char address [ADDRESS_LEN] /* This cannot be used */

There is a solution that requires two actions:

1. Remove the expressions from the declarations and update the #define
line accordingly; also remove the parentheses from the #define line:

#define NAME_LEN 21
#define ADDRESS_LEN 31

char name [NAME_LEN]
char address [ADDRESS_LEN]

SQL Precompiler 4–53

2. Run the C code through the C preprocessor before invoking the SQL
precompiler. This forces all named constants to be translated before
the precompiler tries to use them:

CC/PREPROCESS=filename.SCP filename.SC
SQL$PRE/CC filename.SCP

4.4.4 Supported COBOL Variable Declarations

The following list describes the variable declaration syntax for character data
types that the SQL precompiler supports in COBOL:

• PICTURE IS can be abbreviated as PICTURE or PIC.

• CHARACTER SET character-set-name PICTURE IS.

• PICTURE clauses for numeric variables must begin with S (must be
signed) and cannot include P characters.

• PICTURE clauses cannot include editing characters.

For information about the supported character sets, see Section 2.1.

The following list describes the variable declaration syntax that the SQL
precompiler supports in COBOL:

• PICTURE IS clause

PICTURE IS can be abbreviated as PICTURE or PIC.

PICTURE clauses for numeric variables must begin with S (must be
signed) and cannot include P characters.

PICTURE clauses cannot include editing characters.

• USAGE IS clause

USAGE IS must immediately follow a PICTURE clause.

USAGE IS can be abbreviated as USAGE or omitted completely.

USAGE IS must have as an argument BINARY, COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, or COMPUTATIONAL-3.
COMPUTATIONAL can be abbreviated as COMP in all USAGE IS or
DISPLAY declarations. BINARY is a synonym for COMPUTATIONAL
or COMP.

• VALUE IS clause

VALUE IS can be abbreviated as VALUE and is allowed without restriction.

4–54 SQL Precompiler

• IS EXTERNAL clause

IS EXTERNAL can be abbreviated as EXTERNAL and is allowed without
restriction.

• IS GLOBAL clause

IS GLOBAL can be abbreviated as GLOBAL and is allowed without
restriction.

• SIGN clause

SIGN is allowed but must immediately follow a PICTURE clause or a
USAGE IS clause.

• Group data items

Group data items are allowed without restriction.

Variables associated with the SQL VARCHAR and LONG VARCHAR
data types must be declared as group data items with two elementary
items at level 49. The first elementary item must be a small integer
to contain the actual length of the character string. The second
elementary item must be a character string long enough to contain the
string itself.

* Declaration for an SQL column
* defined as VARCHAR (80):
*
01 VARYING_STRING.

49 STRING_LENGTH PIC S9(4) USAGE IS COMP.
49 STRING_TEXT PIC X(80).

• OCCURS n TIMES clause

OCCURS clauses are permitted only for declarations of indicator
arrays. Although you can use any data type for indicator array
elements, Oracle Rdb recommends that you declare them as integers
(PIC S9(9) COMP).

Multidimension tables (nested OCCURS clauses) and variable-
occurrence data items (OCCURS DEPENDING ON clause) are not
supported.

• REDEFINES clauses

You can refer to host language variables that have a REDEFINES clause
or that are subordinate to a REDEFINES clause.

• SQL date-time data types

SQL_DATE, SQL_DATE_ANSI, SQL_DATE_VMS

SQL Precompiler 4–55

SQL_TIME, SQL_TIMESTAMP

SQL_INTERVAL (DAY TO SECOND)

Use this data type for variables that represent the difference between
two dates or times. (Table 4–2 lists all the supported INTERVAL data
types.)

The precompiler replaces these data types with host language data
declarations that are supported in the compilers themselves.

The following example illustrates some COBOL declarations that SQL will and
will not accept:

* SQL will accept:
01 A PIC S9(7)V99 COMP.
* SQL will not accept (unsigned numeric):
01 B PIC 9(7)V99 COMP.
*
*
* SQL will accept:
01 C COMP-1 VALUE IS -1.
* SQL will not accept (implicit USAGE IS DISPLAY):
01 E PIC S9(4).
*
*
* SQL will accept:
01 indicators-x.

05 indicator-null pic s9(9) comp occurs 40.
* SQL will not accept
01 indicators-x.

05 indicator-null pic s9(9) comp occurs 40 indexed by x1.
*
* SQL will accept (host structure and indicator array):
01 F EXTERNAL.

02 F1 PIC S9(9) COMP.
02 F2 PIC X(20).
02 F2_R REDEFINES F2.

03 G1 PIC X(10).
03 G2 COMP-2.

02 F3 PIC S9(9) COMP.
01 F_IND_ARRAY

02 F_IND OCCURS 3 TIMES PIC S9(9) COMP.

Table 4–6 gives examples of COBOL variable declarations that SQL supports
for each SQL data type.

4–56 SQL Precompiler

Table 4–6 COBOL Declarations for SQL Data Types

SQL Example COBOL Example

CHAR (10) 01 STR1 PICTURE X(10).
The character set is UNSPECIFIED.

CHAR (10) CHARACTER
SET KANJI

01 STR1 CHARACTER SET KANJI PICTURE
X(10).5

VARCHAR (80) 01 STR2.
49 STR2L PICTURE S9(4) COMP.
49 STR2C PICTURE X(80).

The character set is UNSPECIFIED.
VARCHAR (80) CHARACTER
SET KANJI

01 STR2.
49 STR2L PICTURE S9(4) COMP.
49 STR2C CHARACTER SET KANJI

PICTURE X(80).5

LONG VARCHAR 01 STR3.
49 STR3L PICTURE S9(4) COMP.
49 STR3C PICTURE X(16383).

The character set is UNSPECIFIED.
TINYINT (2)
TINYINT

Not supported by COBOL.
Not supported by COBOL.

SMALLINT (2)
SMALLINT

01 NUM1 PICTURE S99V99 COMP.
01 NUM1 PICTURE S9(4) COMP.

INTEGER (2)
INTEGER

01 NUM2 PICTURE S9(7)V99 COMP.
01 NUM2 PICTURE S9(9) COMP.

BIGINT (2)
BIGINT

01 NUM3 PIC S9(16)V99 COMP.
01 NUM3 PIC S9(18) COMP.

FLOAT (6)
FLOAT (25)

01 NUM4 COMP-1.
01 NUM4 COMP-2.1

REAL 01 NUM5 COMP-1.
DOUBLE PRECISION 01 NUM6 COMP-2.2

DATE 01 DATENUM1 SQL_DATE.
DATE ANSI 01 DATENUM2 SQL_DATE_ANSI.

1COMP-2 is FLOAT (25).
2COMP-2 is DOUBLE PRECISION.
5See Section 4.4.1 for information about character length and the precompiler.

(continued on next page)

SQL Precompiler 4–57

Table 4–6 (Cont.) COBOL Declarations for SQL Data Types

SQL Example COBOL Example

DATE VMS 01 DATENUM3 SQL_DATE_VMS.
TIME 01 DATENUM4 SQL_TIME(0).
TIMESTAMP 01 DATENUM5 SQL_TIMESTAMP(2).
INTERVAL DAY TO
HOUR

01 DATENUM6 SQL_INTERVAL (DAY TO
HOUR).3

LIST OF BYTE VARYING 01 STR4 PICTURE X(8).4

3Table 4–2 lists all the supported INTERVAL data types.
4This example shows how to retrieve the segmented string (list) identifier, a pointer to the first
element of the list, using an 8-byte character string. (You could use a BIGINT instead if you
prefer.) To retrieve the values of individual elements of that list, use host language variables of
data type CHAR or VARCHAR.

The online sample program sql_all_datatypes.sco provides examples of
declaring variables and using them in SQL statements. The program also
illustrates a variety of SQL data definition and data manipulation statements.
After SQL is installed, you can print, type, or search the program to find
sample code related to a variety of topics.

In COBOL, a structure defined as word followed by a string is treated as a
single variable. The type equates to VARCHAR(n).

4.4.5 Supported FORTRAN Variable Declarations

The following list describes the variable declaration syntax for character data
types that the SQL precompiler supports in FORTRAN:

• CHARACTER

• CHARACTER character-set-name

For information about the supported character sets, see Section 2.1.

The following list describes the variable declaration syntax that the SQL
precompiler supports in FORTRAN:

• Declarations – See Table 4–7.

• Initial values assigned in the declaration

• STRUCTURE declarations

4–58 SQL Precompiler

• UNION declarations within structures

• RECORD statements

• DIMENSION statements

DIMENSION statements are permitted only for declarations of
indicator arrays. Although you can use any data type for indicator
array elements, Oracle Rdb recommends that you use variables of the
INTEGER data type.

Multidimension arrays and dynamic-sized arrays are not supported.

Table 4–7 Supported FORTRAN Datatypes

FORTRAN type SQL type Comments and Restrictions

BYTE TINYINT
CHARACTER*n CHAR The n represents a positive

integer literal
INTEGER INTEGER
INTEGER*1 TINYINT
INTEGER*2 SMALLINT
INTEGER*4 INTEGER
INTEGER*8 BIGINT
LOGICAL INTEGER
LOGICAL*1 TINYINT
LOGICAL*2 SMALLINT
LOGICAL*4 INTEGER
LOGICAL*8 BIGINT
REAL REAL
REAL*4 REAL
REAL*8 DOUBLE PRECISION

(continued on next page)

SQL Precompiler 4–59

Table 4–7 (Cont.) Supported FORTRAN Datatypes

FORTRAN type SQL type Comments and Restrictions

STRUCTURE /name/
integer*2 len
character*n body

END STRUCTURE

VARCHAR The named structure can
be used to define other
FORTRAN host variables.
The len component of the
structure must be set to the
correct length of the string
before use as a parameter
to SQL. The n represents a
positive integer literal

SQL_DATE
SQL_DATE_ANSI
SQL_DATE_VMS
SQL_TIME
SQL_TIMESTAMP

The SQL precompiler
will transform the pseudo
types in native FORTRAN
datatypes.

SQL_INTERVAL
(DAY TO SECOND)

Use this data type for
variables that represent the
difference between two dates
or times. Table 4–2 lists all
the supported INTERVAL
data types.

Implicit declarations are not supported. SQL generates a ‘‘host variable was
not declared’’ error when it encounters an implicitly declared variable in an
SQL statement.

The following example illustrates some FORTRAN declarations that SQL will
and will not accept:

C SQL will accept:
CHARACTER*1 F1, F2*2 /’XX’/, F3*2345
LOGICAL B1*2/1/
C
C SQL will accept:
REAL D1*4, D2*8
C
C SQL will not accept (REAL declaration bigger than 8 bytes):
REAL D3*16
C SQL will not accept (COMPLEX data type unsupported):
COMPLEX E1*8, E2*16, E3, E4*8(16)
C

4–60 SQL Precompiler

C
C SQL will accept:
C host structure:
STRUCTURE /M1_STRUCT/

STRUCTURE /M11_STRUCT/ M11
CHARACTER M111*6, M112*20, M113*6

END STRUCTURE
INTEGER M12*2
UNION
MAP
CHARACTER M13*15
END MAP
MAP
INTEGER M13_A*4
END MAP
END UNION

END STRUCTURE
C records based on structures:
RECORD /M1_ STRUCT/ M_1, M_2
RECORD /M11_STRUCT/ M_4
C
C
C SQL will accept (indicator array):
INTEGER*4 L1, L2
DIMENSION L1(10), L2(-3:7)
C
C SQL will not accept (dynamic-sized array):
CHARACTER F4*(*)
C SQL will not accept (multidimension array):
INTEGER*2 L5
DIMENSION L5(2,5)
C SQL will not accept (arrays of structures):
RECORD /M1_STRUCT/ M_2(10)

Table 4–8 gives examples of FORTRAN variable declarations that SQL
supports for each SQL data type.

SQL Precompiler 4–61

Table 4–8 FORTRAN Declarations for SQL Data Types

SQL Example FORTRAN Example

CHAR (10) CHARACTER*10 STR1
The character set is UNSPECIFIED.

CHAR (10) CHARACTER
SET KANJI

CHARACTER*10 CHARACTER SET KANJI
STR16

VARCHAR (10) CHARACTER*10 STR2
The character set is UNSPECIFIED.

VARCHAR (10) CHARACTER
SET KANJI

CHARACTER*10 CHARACTER SET KANJI
STR26

LONG VARCHAR CHARACTER*16383 STR3
The character set is UNSPECIFIED.

TINYINT LOGICAL*1 NUM11

SMALLINT INTEGER*2 NUM12

INTEGER INTEGER*4 NUM22

BIGINT INTEGER*8 NUM3
FLOAT (6)
FLOAT (25)

REAL*4 NUM4
REAL*8 NUM4 or
DOUBLE PRECISION NUM4

REAL REAL*4 NUM5
DOUBLE PRECISION DOUBLE PRECISION NUM6
DATE SQL_DATE DATENUM1
DATE ANSI SQL_DATE_ANSI DATENUM2
DATE VMS SQL_DATE_VMS DATENUM3
TIME SQL_TIME DATENUM4
TIMESTAMP SQL_TIMESTAMP(2) DATENUM5
INTERVAL DAY TO
HOUR

SQL_INTERVAL (DAY TO HOUR) DATENUM63

1In FORTRAN, data type BYTE is a synonym for LOGICAL*1 and is parsed by SQL.
2FORTRAN does not support scale factors on integer data types.
6See Section 4.4.1 for information about character length and the precompiler.

(continued on next page)

4–62 SQL Precompiler

Table 4–8 (Cont.) FORTRAN Declarations for SQL Data Types

SQL Example FORTRAN Example

LIST OF BYTE
VARYING3

CHARACTER*8 STR44

4Table 4–2 lists all the supported INTERVAL data types.

The online sample program sql_all_datatypes.sfo provides examples of
declaring variables and using them in SQL statements. The program also
illustrates a variety of SQL data definition and data manipulation statements.
After SQL is installed, you can print, type, or search the program to find
sample code related to a variety of topics.

Note

When using FORTRAN with the SQL precompiler, keep in mind
that the FORTRAN compiler lets you specify a maximum number
of continuation lines (up to 99) in a statement if you use the
CONTINUATIONS qualifier. The default number of continuation
lines is 19.

If a program uses a record definition, the SQL precompiler separates
the record into individual elements and places each one on a separate
line. If the number of elements in the record is greater than the
maximum number of continuation lines, the FORTRAN compiler will
generate an error.

If this happens, increase the number of continuation lines using
the CONTINUATIONS qualifier to the FORTRAN command line. If
the record contains more elements than the maximum allowed by
FORTRAN (99 elements), you can edit the intermediate file (the .for
file extension) to place more than one element on a line.

In FORTRAN, a structure defined as word followed by a string is treated as a
single variable. The type equates to VARCHAR(n). For example, the structure
in the following example is treated as a single variable:

STRUCTURE /struct_name
INTEGER*2 length
CHARACTER*32 string

END STRUCTURE

SQL Precompiler 4–63

4.4.6 Supported Pascal Variable Declarations

The following list describes the variable declaration syntax that the SQL
precompiler supports in Pascal:

• Data type keywords

Declarations can include only the following Pascal data types:

INTEGER8, INTEGER16, INTEGER32, and INTEGER64

REAL

SINGLE

DOUBLE

F_FLOAT

D_FLOAT

G_FLOAT

S_FLOAT

T_FLOAT

CHAR

PACKED ARRAY [1..n] OF CHAR;

VARYING [u] OF CHAR

[BYTE] –128..127;

[WORD] –32768..32767;

Date-time data types (Table 4–2 lists these data types.)

In addition, the SQL Pascal precompiler provides the following data types:

SQL_LONG_VARCHAR

SQL_DATE

SQL_SMALLINT

SQL_INDICATOR

SQL_BIGINT

SQL_QUAD

SQL_DATE, SQL_DATE_ANSI, SQL_DATE_VMS

4–64 SQL Precompiler

SQL_TIME, SQL_TIMESTAMP

SQL_INTERVAL (DAY TO SECOND)

Use this data type for variables that represent the difference between
two dates or times. (Table 4–2 lists all the supported INTERVAL data
types.)

• Records

The SQL precompiler supports Pascal record definitions. It also supports
nested records such as the following:

type_record_type = record
employee_id : employee_id_str;
last_name : last_name_str;
first_name : first_name_str;
middle_init : middle_init_str;
address_dat1: address_str;
address_dat2: address_str;
city : city_str;
state : state_str;
postal_code : postal_code_str;
sex : sex_str;
status_code : status_code_str;

end;

name_rec = record
last_name : last_name_str;
first_name : first_name_str;
middle_init : middle_init_str;

end;

address_rec = record
address_dat1 : address_str;
address_dat2 : address_str;
city : city_str;
state : state_str;
postal_code : postal_code_str;

end;

rec_in_rec = record
employee_id : employee_id_str;
emp_name : name_rec;
emp_addr : address_rec;
sex : sex_str;
status_code : status_code_str;

end;

rec_in_rec_in_rec = record
nested_again : rec_in_rec;

end;

SQL Precompiler 4–65

A record that is used in an SQL statement cannot contain a pointer to
another record.

The SQL precompiler does not support variant records.

• Initial value assignments

The SQL precompiler supports initial values assigned in the declaration:

dateind : SQL_INDICATOR:=0;

• Arrays

Packed arrays are supported to declare SQL character strings.

Single-dimension arrays are supported to declare an indicator array to
refer to a structure in SQL statements. The elements of the array must be
declared as word integers [WORD]–32768..32767 or SQL_INDICATOR.

• Pointers

The SQL precompiler for Pascal supports one level of pointers.

type
a = ^integer;

var
b : a; (* the use of the variable b is supported *)
c : ^a; (* do not use any form of variable c in an SQL statement)

The following examples illustrate valid Pascal declaration syntax:

var
pas_date : SQL_TIMESTAMP;
pas_float: real;
pas_flt : single;
pas_gflo : double;
pas_int : integer;
pas_qword: SQL_BIGINT;
pas_text : packed array [1..31] of char;
pas_vtxt : varying [255] of char;
pas_smal : [word] -32768..32767;

dateind : SQL_INDICATOR:=0;
floaind : [word] -32768..32767;
gfloind : SQL_INDICATOR;
intind : SQL_INDICATOR;
qind,txtind,vtxtind,smalind : SQL_INDICATOR;

4–66 SQL Precompiler

Here are examples of invalid declaration syntax for Pascal:

type
x = ^my_rec; (*forward declarations are not supported*)
myrec = record

a: integer;
b: integer;

end;

A record cannot point to itself. For example, the following declaration is not
supported:

foo = record
a : integer;
b : SQL_SMALLINT;
c : ^foo;

end;

bar = record
a : integer;
b : integer
c : bar;

The SQL precompiler does not support the following:

• Attributes other than [HIDDEN]

• Ranges

The following example shows SQL statements embedded in Pascal host
language statements. For readability, all Pascal host language statements
are written in lowercase letters, and all SQL data types and embedded SQL
statements are written in uppercase letters.

label
leap_frog;

begin

dmp_alldtps;
insert_some_data;
dmp_alldtps;
EXEC SQL OPEN DTPS;
EXEC SQL FETCH DTPS INTO

:PAS_DATE :DATEIND,
:PAS_FLT:FLOAIND,
:PAS_GFLO INDICATOR :GFLOIND,
:PAS_INT:INTIND,
:PAS_QWORD :QIND,
:PAS_TEXT INDICATOR :TXTIND,
:PAS_VTXT :VTXTIND,
:PAS_SMAL INDICATOR :SMALIND ;

SQL Precompiler 4–67

writeln(’single ’,pasflt);
EXEC SQL CLOSE DTPS;

(*Note that an SQL statement can reside on the same line as a label*)
leap_frog: EXEC SQL ROLLBACK;

end.

All SQL statements embedded in a Pascal host language program must end
with a semicolon (;). This means that if you want to place an SQL statement
before an else action, you must surround it with a begin-end block:

if budget_actual < budget_total
then

begin
EXEC SQL INSERT ...;
end

else

The online sample program sql_all_datatypes.spa provides examples of
declaring variables and using them in SQL statements. The program also
illustrates a variety of SQL data definition and data manipulation statements.
After SQL is installed, you can print, type, or search the program to find
sample code related to a variety of topics.

The following example shows the commands to precompile, link, and run the
sample program sql_all_datatypes.spa:

$ SQLPRE :== SQLPRE
$ SQLPRE sql_all_datatypes/PASCAL
$ LINK sql_all_datatypes
$ RUN sql_all_datatypes
.
.
.
Setting up the database.
Declaring the schema.
Declaring the cursor.
Inserting data into table.

These are the stored rows:
-

4–68 SQL Precompiler

date_ind = 0
pas_date = 12-OCT-1988
pas_float = 9.69600E+01
pas_gfloat = 1.000000000000E+008
pas_int = 2147483647
pas_qword l0 = 5000000
pas_qword l1 = 0
pas_text = text in a packed array
pas_vartxt = varying text
pas_small = 19

date_ind = 0
pas_date = 12-OCT-1988
pas_float = 9.69600E+01
pas_gfloat = 1.000000000000E+008
pas_int = 2147483647
pas_qword = null
pas_text = Changed the text
pas_vartxt = varying text
pas_small = 19
single 9.69600E+01

Table 4–9 gives examples of Pascal variable declarations that SQL supports for
each SQL data type.

Table 4–9 Pascal Declarations for SQL Data Types

SQL Example Pascal Example

LONG VARCHAR SQL_LONG_VARCHAR;1

TINYINT SQL_TINYINT;2

SMALLINT SQL_SMALLINT;3

SMALLINT SQL_INDICATOR;4

SMALLINT [WORD] –32768..32767;
BIGINT SQL_BIGINT;5

INTEGER INTEGER;
REAL REAL;

1SQL_LONG_VARCHAR expands to [HIDDEN] VARYING [16383] OF CHAR;
2SQL_TINYINT expands to [HIDDEN, BYTE] –128..127;
3SQL_SMALLINT expands to [HIDDEN, WORD] –32678..32767;
4SQL_INDICATOR expands to [HIDDEN, WORD] –32678..32767;
5SQL_BIGINT is the only way to specify a BIGINT. SQL_BIGINT expands to [HIDDEN, QUAD,
UNSAFE] RECORD L0:INTEGER;L1:INTEGER END; the user then can refer to the pieces by
variable.L0 and variable.L1.

(continued on next page)

SQL Precompiler 4–69

Table 4–9 (Cont.) Pascal Declarations for SQL Data Types

SQL Example Pascal Example

REAL SINGLE;
REAL F_FLOAT;
REAL S_FLOAT;
DOUBLE PRECISION DOUBLE;
DOUBLE PRECISION D_FLOAT;
DOUBLE PRECISION G_FLOAT;
DOUBLE PRECISION T_FLOAT;
CHAR/CHAR(1) CHAR;
CHARACTER(n) PACKED ARRAY [1..n] OF CHAR;
VARCHAR(u) VARYING [u] OF CHAR;
DATE SQL_DATE;
DATE ANSI SQL_DATE_ANSI;
DATE VMS SQL_DATE_VMS;
TIME SQL_TIME(0);
TIMESTAMP SQL_TIMESTAMP(2);
INTERVAL YEAR TO
MONTH

SQL_INTERVAL (YEAR TO MONTH);6

INTERVAL DAY TO
HOUR

SQL_INTERVAL (DAY TO HOUR);6

LIST OF BYTE
VARYING

PACKED ARRAY [1..8] OF CHAR7

6Table 4–2 lists all the supported INTERVAL data types.
7Pascal does not support the LIST OF BYTE VARYING data type. This example shows how to
retrieve the segmented string identifier, a pointer to the first element of the list, using an 8-
byte character string. (If you prefer, you can use a BIGINT.) To retrieve the values of individual
elements of that list, use host language variables of data type CHAR or VARCHAR.

Note

The Pascal precompiler for SQL gives an incorrect %SQL-I-
UNMATEND error when it parses a declaration of an array of records.
It does not associate the END with the record definition, and the
resulting confusion in host variable scoping causes a fatal error.

4–70 SQL Precompiler

To avoid the problem, declare the record as a type and then define your
array of that type. For example:

main.spa:

program main (input,output);

type
exec sql include ’bad_def.pin’; !gives error
exec sql include ’good_def.pin’; !ok
var

a : char;

begin
end.

bad_def.pin

x_record = record
y : char;
variable_a: array [1..50] of record

a_fld1 : char;
b_fld2 : record;

t : record
v : integer;

end;
end;

end;
end;

good_def.pin

good_rec = record
a_fld1 : char;
b_fld2 : record

t : record
v: integer;

end;
end;

end;

x_record = record
y : char
variable_a : array [1..50] of good_rec;

end;

SQL Precompiler 4–71

4.4.7 Supported PL/I Variable Declarations

The following list describes the variable declaration syntax that the SQL
precompiler supports in PL/I:

• Declarations

Declarations can include only the following PL/I data types:

CHARACTER

CHARACTER can be abbreviated as CHAR.

CHARACTER VARYING

CHARACTER VARYING can be abbreviated as CHAR VAR.

Date-time data types (Table 4–2 lists these data types.)

TINYINT

TINYINT is FIXED BINARY(7).

FIXED BINARY, FIXED DECIMAL

BINARY can be abbreviated as BIN, and DECIMAL can be abbreviated
as DEC. Scale factors are not allowed on FIXED BINARY declarations.

FLOAT BINARY, FLOAT DECIMAL

SQL_DATE, SQL_DATE_ANSI, SQL_DATE_VMS

SQL_TIME, SQL_TIMESTAMP

SQL_INTERVAL (DAY TO SECOND)

Use this data type for variables that represent the difference between
two dates or times. (Table 4–2 lists all the supported INTERVAL data
types.)

DECIMAL data type is converted to FIXED

NUMERIC data type is converted to PACKED

• Storage class attributes

Any of the storage class attributes (BASED, AUTOMATIC, DEFINED,
STATIC, variable, EXTERNAL, and INTERNAL) is allowed. The BASED
attribute declarations must include a location reference.

• INITIAL attribute

• Structures

4–72 SQL Precompiler

Structures are allowed without restriction.

• Arrays

Arrays are permitted only for declarations of indicator arrays. Although
you can use any data type for indicator array elements, Oracle Rdb
recommends that you declare them as INTEGER variables.

Multidimension array items are not supported. Arrays of structures are
not supported. Arrays that are in a group that is itself an array are not
supported. Dynamic-sized arrays are not supported.

The following example illustrates some PL/I declarations that SQL will and
will not accept:

/* SQL will accept:
*/
DECLARE 1 E, (3 QE1, 3 QE2, 3 QE3) CHAR(10);

DCL P FIXED BIN(10), L FLOAT(53) BIN, K DECIMAL(10,2) FIXED;

DCL N VAR CHAR(10) INITIAL(’XXXX’);

DCL 1 B_P_REC BASED(ADDR(S_P_REC)),
2 PNUM CHAR(6),
2 PNAME CHAR(20),
2 WEIGHT FIXED BIN(31),
2 COLOR CHAR(6),
2 CITY CHAR(10);

DCL D_IND_VEC (5) FIXED BIN(15) DEFINED(S_IND_VEC);

/* SQL will not accept:
*/
DCL A1 (1:10, 1:10) FIXED BIN(15); /* multidimension table */

DCL B PICTURE ’++++,+++,++9’; /* picture clauses */

DCL D1 BIT_FIELD(32); /* bit fields */

DCL E1 FILE; /* file declarations */

DCL 1 F (10), 2 F1 FIXED BIN(15); /* arrays of structures */

DCL J POINTER; /* pointer declarations */

DCL K AREA(512); /* area declarations */

DCL L OFFSET(K); /* offset declarations */

DCL M FIXED BIN(31) /* external value declarations */
EXTERNAL VALUE GLOBALREF;

SQL Precompiler 4–73

Table 4–10 gives examples of PL/I variable declarations that SQL supports for
each SQL data type.

Table 4–10 PL/I Declarations for SQL Data Types

SQL Example PL/I Example

CHAR (10) DCL STR1 CHAR(10);
VARCHAR (80) DCL STR2 CHAR(80) VAR;
LONG VARCHAR DCL STR3 CHAR(16383) VAR;
TINYINT DCL NUM1 BIN FIXED(7);1

SMALLINT DCL NUM1 BIN FIXED(15);1

INTEGER DCL NUM2 BIN FIXED(31);1

BIGINT DCL NUM3 BYTE_FIELD(8); or
DCL NUM3 FIXED DEC(18);2

FLOAT (6)
FLOAT (25)

DCL NUM4 BIN FLOAT(24);
DCL NUM4 BIN FLOAT(53);

REAL DCL NUM4 BIN FLOAT(24);
DOUBLE PRECISION DCL NUM4 BIN FLOAT(53);
DATE DCL P_DATE (SQL_DATE);
DATE ANSI DCL P_DATE_A SQL_DATE_ANSI;
DATE VMS DCL P_DATE_V SQL_DATE_VMS;
TIME DCL P_TIME SQL_TIME(0);
TIMESTAMP DCL P_TIMESTAMP SQL_TIMESTAMP(2);
INTERVAL DAY TO
HOUR

DCL P_INTER1 SQL_INTERVAL (DAY TO HOUR);3

LIST OF BYTE
VARYING

DCL STR4 CHAR(8);4

1PL/I does not support decimal scale factors on fixed binary data types; use the PL/I packed
decimal data type to specify a scale factor.
2PL/I does not support BIGINTs. Use BYTE_FIELD(8) to pass BIGINTs to other languages; use
FIXED DEC(18) (packed decimal) to work with BIGINTs in PL/I.
3Table 4–2 lists all the supported INTERVAL data types.
4PL/I does not support the LIST OF BYTE VARYING data type. This example shows how to
retrieve the segmented string identifier, a pointer to the first element of the list, using an 8-byte
character string. (You can use a BIGINT instead if you prefer.) To retrieve the values of individual
elements of that list, use host language variables of data type CHAR or VARCHAR.

4–74 SQL Precompiler

The online sample program sql_all_datatypes.spl provides examples of
declaring variables and using them in SQL statements. The program also
illustrates a variety of SQL data definition and data manipulation statements.
After SQL is installed, you can print, type, or search the program to find
sample code related to a variety of topics.

SQL Precompiler 4–75

5
SQL Routines

This chapter describes routines used by SQL. All the routines described in
this chapter can be called from any host language program that calls an SQL
module or from any SQL precompiled program. These routines cannot be
called from an SQL module.

Note

SQL defines all routines in uppercase on OpenVMS. Application
programs must adhere to the rules about case-sensitivity of the
language compiler to ensure that the programs call the routines
correctly.

Table 5–1 describes the type of information that is presented in the following
routine sections and the format used to present the information.

Table 5–1 Sections in the Routine Template

Section Description

Routine Name Appears at the top of the page

Overview Appears below the routine name and explains, usually in one or
two sentences, what the routine does

Format Gives the routine entry point name and the routine argument
list; also specifies whether arguments are required or optional

Returns Gives the value returned from the routine

Arguments Gives detailed information about each parameter

(continued on next page)

SQL Routines 5–1

Table 5–1 (Cont.) Sections in the Routine Template

Section Description

Description Contains detailed information about specific actions taken by the
routine, interaction between routine arguments, operation of the
routine within the context of a specific operating system, and
resources used by the routine

Usage Notes Contains additional pieces of information related to application
programming

Related Routines Lists any related routines

Example Shows an example using the routine

5–2 SQL Routines

sql_close_cursors

sql_close_cursors

Format
sql_close_cursors ()

Returns

No value returned.

Arguments

None.

Description

The sql_close_cursors routine closes all open cursors.

Usage Notes

• If you use the sql_close_cursors routine, you do not need to execute the
CLOSE statement. This routine closes all open cursors.

• Use the sql_close_cursors routine to close cursors in any application
that explicitly calls the DECdtm services. However, if you use default
transaction support, you do not need to close any cursors because default
transaction support closes all cursors for you.

• You can use the name sql$close_cursors to invoke this routine.

Related Routines

None.

Example

The following example shows an excerpt of an SQL precompiled program that
uses the sql_close_cursors routine to close two cursors:

SQL Routines 5–3

sql_close_cursors

.

.

.
/* Fetch records from two cursors. The program has already declared them and

opened them. */
EXEC SQL USING CONTEXT :CONTEXT_STRUC FETCH CURSOR_A;
EXEC SQL USING CONTEXT :CONTEXT_STRUC FETCH CURSOR_B;

.

.

.
/* Close both cursors.*/

sql_close_cursors();
.
.
.

5–4 SQL Routines

sql_deregister_error_handler

sql_deregister_error_handler
Deregisters an application’s error handling routine

Format
sql_deregister_error_handler ()

Returns

No value returned.

Arguments

None.

Description

The sql_deregister_error_handler routine deregisters the application’s currently
registered error handling routine.

When you deregister a routine, SQL discontinues using the application’s
currently registered error handling routine. The standard error handling
mechanisms are always in effect.

Usage Notes

• You do not have to use the sql_deregister_error_handler to deregister a
routine before registering a new routine. The sql_register_error_handler
routine deregisters the current routine and registers the new routine.

Related Routines

• sql_get_error_handler

• sql_register_error_handler

Example

See Example 5–1 for an example using the SQL error handling routines.

SQL Routines 5–5

sql_get_error_handler

sql_get_error_handler
Gets the address of the application’s currently registered error handling routine
and the address of the user-specified data

Format
sql_get_error_handler (user-error-routine, user-data)

Returns

No value returned.

Arguments

user-error-routine
The address of an application’s error handling routine

Value: Address of an application’s error handling routine
Data type: Longword
Passing mechanism: By reference

user-data
The address of the user-specified data

Value: Address of the user-specified data
Data type: Longword
Passing mechanism: By reference

Description

The sql_get_error_handler routine gets the address of the application’s
currently registered error handling routine and the address of the user-
specified data.

An application can use the sql_get_error_handler routine to get the address of
the currently registered routine and user-specified data. The application can
store the values in variables for use later in the program.

Related Routines

• sql_register_error_handler

• sql_deregister_error_handler

5–6 SQL Routines

sql_get_error_handler

Example

See Example 5–1 for an example using the SQL error handling routines.

SQL Routines 5–7

sql$get_error_text

sql$get_error_text
Passes error text with formatted ASCII output to programs for processing

Format
sql$get_error_text (buf [,errmsglen])

Returns

The status code that results from the copy operation of the vector’s text to the
user’s buffer.

Arguments

buf
The buffer declared to receive the text

Value: Address of the buffer declared to receive the text
Data type: Character string
Passing mechanism: By descriptor

errmsglen
The number of characters allotted for the error messages to be returned. This
parameter is optional.

Value: Number of characters allotted for the error messages
Data type: Word
Passing mechanism: By reference

Description

Use the sql$get_error_text routine when you want to pass error text with
formatted ASCII output (FAO) substitutions to your program for processing.

To use the sql$get_error_text routine, you must include a buffer (field) in your
program declarations to receive the text SQL will pass to it. Declare this
field as a text string with a length sufficient to accommodate the number of
characters you expect for the message associated with the RDB$LU_STATUS
value and for all follow-on messages. As an option, you can declare the buffer
length as a separate field (defined as a signed word).

5–8 SQL Routines

sql$get_error_text

Usage Notes

• The status code returned by this routine is not the status code in the
message vector.

• The following list shows the languages with which you can use the sql$get_
error_text routine and how to call it from each language:

Ada

procedure SQL_GET_ERROR_TEXT (txt : out text-buffer-name;
len : out short_integer);

pragma INTERFACE (NONADA, SQL_GET_ERROR_TEXT):

pragma IMPORT_PROCEDURE (INTERNAL => SQL_GET_ERROR_TEXT,
EXTERNAL => ’SQL$GET_ERROR_TEXT’,
PARAMETER_TYPES => (text-buffer-name,

short_integer,)
MECHANISM =>(DESCRIPTOR, REFERENCE));

BASIC

CALL SQL$GET_ERROR_TEXT(get_error_buffer)

C

declaration of descriptor for text-buffer-name
SQL$GET_ERROR_TEXT(&descriptor-name [, &text-buffer-length])

COBOL

CALL ’SQL$GET_ERROR_TEXT’ USING BY DESCRIPTOR text-buffer-name
[BY REFERENCE text-buffer-length]

FORTRAN

CALL SQL$GET_ERROR_TEXT (%DESCR(text-buffer-name), [text-buffer-length])

Pascal

type
smallint = [word] -32768..32767;

var
buf : packed array [1..255] of char;
len : smallint;

procedure SQL$GET_ERROR_TEXT (
var err_buff : [class_s] packed array [$L2..$U2:integer]

of char;
var length : smallint); external;

SQL$GET_ERROR_TEXT (buf, len);

SQL Routines 5–9

sql$get_error_text

PL/I

DCL SQL$GET_ERROR_TEXT ENTRY (ANY, FIXED(15) BIN);
CALL SQL$GET_ERROR_TEXT (DESCRIPTOR(text-buffer-name)[,text-buffer-length]

• The sql$get_error_text routine returns a carriage return and line-feed
character to separate follow-on messages from the primary message, and to
separate follow-on messages from each other.

The sql$get_error_text routine inserts the characters in the buffer declared
to receive the text as delimiters between the messages. Typically, their
presence eases display of the text to the terminal screen.

However, if a program uses a forms product to display the message, the
carriage return and line-feed characters are interpreted as unprintable
characters.

The following COBOL example shows one way to handle the presence of
the carriage return and line-feed characters in the buffer:

CALL "SQL$GET_ERROR_TEXT" USING
BY DESCRIPTOR BUFFER,
BY REFERENCE LEN

STRING CARRIAGE-RET, LINE-FEED DELIMITED BY SIZE INTO CRLF
UNSTRING BUFFER DELIMITED BY CRLF INTO MSG-TXT_RDBFEL(1),

MSG-TXT_RDBFEL(2), MSG-TXT_RDBFEL(3)
*
* CRLF is a PIC XX field that contains <cr><lf>.
* MSG-TXT-RDBFEL is an array of lines to be
* displayed for the error message.
*

Related Routines

• sql_get_error_text

Example

The following example shows the sql$get_error_text routine used in a C
program:

/* This function uses the sql$get_error_text routine to display the
* messages returned by various facilities for unexpected error conditions
* that occur. This program continues after these unexpected errors occur,
* and allows the user to select the exit program option on the menu.

void display_sqlget_message(void)

{

5–10 SQL Routines

sql$get_error_text

char get_error_buffer[301];
short error_msg_len;

t_dsc.dsc$b_class = DSC$K_CLASS_S;
t_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
t_dsc.dsc$w_length = 300;
t_dsc.dsc$a_pointer = (char *) (&get_error_buffer);
return_status = SQL$GET_ERROR_TEXT(&t_dsc,&error_msg_len);
get_error_buffer[error_msg_len] = ’\0’;
printf("\n\nThis condition was not expected.\n\n");
printf("%s",get_error_buffer);
release_screen = getchar();
printf("\n");

return;
}

SQL Routines 5–11

sql_get_error_text

sql_get_error_text
Passes error text with formatted ASCII output to programs for processing.

Format
sql_get_error_text (buf, len, errmsglen)

Returns

The status code that results from the copy operation of the vector’s text to the
user’s buffer.

Arguments

buf
The buffer declared to receive the text.

Value: Address of the buffer declared to receive the text
Data type: Character string
Passing mechanism: By reference

len
The length of the buffer declared to receive the text.

Value: The length of the character string pointed to by the
first parameter

Data type: Longword
Passing mechanism: By value

errmsglen
The number of characters allotted for the error messages to be returned.

Value: Number of characters allotted for the error messages
Data type: Longword
Passing mechanism: By reference

5–12 SQL Routines

sql_get_error_text

Description

Use the sql_get_error_text routine when you want to pass error text with
formatted ASCII output (FAO) substitutions to your program for processing.

To use the sql_get_error_text routine, you must include a buffer (field) in your
program declarations to receive the text SQL will pass to it. Declare this
field as a text string with a length sufficient to accommodate the number of
characters you expect for the message associated with the RDB$LU_STATUS
value and for all follow-on messages.

Usage Notes

• The status code returned by this routine is not the status code in the
message vector.

• The following list shows the languages with which you can use the sql_get_
error_text routine and how to call it from each language:

Ada

procedure SQL_GET_ERROR_TEXT(ERROR_BUFFER : out string;
ERROR_BUFFER_LEN : in integer;
ERROR_MSG_LEN : out integer);

pragma INTERFACE(SQL,SQL_GET_ERROR_TEXT);
pragma IMPORT_PROCEDURE(internal => SQL_GET_ERROR_TEXT,

external => "SQL$GET_ERROR_TEXT",
parameter_types => (string,integer,integer),
mechanism => (reference,value,reference));

-- sql_get_error_text variables.
ERROR_BUFFER : string(1..256);
ERROR_BUFFER_LEN : integer := 256;
ERROR_MSG_LEN : integer;

sql_get_error_text(error_buffer,error_buffer_len,error_msg_len);

BASIC

external sub sql_get_error_text (string by ref, long by value, long by
ref)
MAP STRING error_buffer = 256
DECLARE LONG error_msg_len

CALL sql_get_error_text (error_buffer, LEN(error_buffer), error_msg_len)

SQL Routines 5–13

sql_get_error_text

C

char error_buffer[n];
int error_msg_len;

sql_get_error_text(error_buffer, sizeof(error_buffer), &error_msg_len);

COBOL

01 GETERRVARS.
02 error-buffer-len PIC S9(9) COMP VALUE 132.
02 error-msg-len PIC S9(9) COMP.
02 error-buffer PIC X(132).

CALL "sql_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.

FORTRAN

CHARACTER*256 error_buffer
INTEGER error_msg_len

CALL sql_get_error_text (%REF(error_buffer),
1 %VAL(LEN(error_buffer)),
2 %REF(error_msg_len))

Pascal

CONST
error_buffer_len = 132;

VAR
error_buffer : packed array [1..error_buffer_len] of char;
error_msg_len : integer;

PROCEDURE sql_get_error_text
(%ref err_buffer: packed array [l1..u1:integer] of char;
%immed err_buflen: integer;
var err_length: integer); EXTERNAL;

sql_get_error_text (err_buffer := error_buffer,
err_buflen := LENGTH(error_buffer),
err_length := error_msg_len);

WRITELN (err_buffer: err_length);

PL/I

5–14 SQL Routines

sql_get_error_text

DECLARE error_buffer CHARACTER(256),
error_buffer_len FIXED BINARY(31) INITIAL (256),
error_msg_len FIXED BINARY(31);

CALL sql_get_error_text (error_buffer, error_buffer_len, error_msg_len)

• The sql_get_error_text routine returns a carriage return and line-feed
character to separate follow-on messages from the primary message, and to
separate follow-on messages from each other.

The sql_get_error_text routine inserts the characters in the buffer declared
to receive the text as delimiters between the messages. Typically, their
presence eases display of the text to the terminal screen.

However, if a program uses a forms product to display the message, the
carriage return and line-feed characters are interpreted as unprintable
characters.

The following COBOL example shows one way to handle the presence of
the carriage return and line-feed characters in the buffer:

*
* CRLF is a PIC XX field that contains <cr><lf>.
* MSG-TXT-RDBFEL is an array of lines to be displayed for the error message.
*

STRING CARRIAGE-RET, LINE-FEED DELIMITED BY SIZE INTO CRLF.
CALL "sql_get_error_text" USING BY REFERENCE BUFFER,

BY VALUE BUF_LEN
BY REFERENCE MSG_LEN.

UNSTRING BUFFER DELIMITED BY CRLF INTO MSG-TXT_RDBFEL(1),
MSG-TXT_RDBFEL(2), MSG-TXT_RDBFEL(3).

Related Routines

• sql$get_error_text

Example

The following example shows the sql_get_error_text routine used in a C
program:

SQL Routines 5–15

sql_get_error_text

/*
* This function uses the sql_get_error_text routine to display the
* messages returned by various facilities for unexpected error conditions
* that occur. This program continues after these unexpected errors.
*/
void display_sqlget_message(void)

{
char err_buf[1024];
int err_msg_len;

sql_get_error_text(&err_buf, sizeof(err_buf), &err_msg_len);
err_buf[err_msg_len] = 0;
printf("%s\n",err_buf);
return;
}

5–16 SQL Routines

sql_get_message_vector

sql_get_message_vector
Retrieves information from the message vector about the status of the last SQL
statement.

Format
sql_get_message_vector (addr, index)

Returns

No value returned.

Arguments

addr
Address of a variable into which the requested vector element will be written.

Value: Address of the variable declared to receive the vector
element

Data type: longword (32 bit)
Passing mechanism: By reference

index
The index value of the vector element to return.

Value: A value greater than or equal to 1 and less than or
equal to 20

Data type: Unsigned longword
Passing mechanism: By value

The following table shows the index values and how they map to vector
elements and the information contained in each vector element.

Index
Value Information Returned

1 Number of arguments in the vector
2 Primary status code of the last SQL statement
3 Number of FAO arguments to primary message
4–20 Return status for follow-on messages, if any

SQL Routines 5–17

sql_get_message_vector

Description

Use the sql_get_message_vector routine to retrieve information from the
RDB$MESSAGE_VECTOR array. The array provides information about the
execution status of SQL statements. Index 2 of the sql_get_message_vector
routine returns the primary status code of the last SQL statement. This index
is comparable to the SQLCODE status parameter.

The ANSI/ISO SQL standard does not include the sql_get_message_vector
routine or the RDB$MESSAGE_VECTOR array. For application programs
that comply with the standard, use the SQLCODE or SQLSTATE status
parameters. Furthermore, the status values returned for a particular condition
may change in future versions of Oracle Rdb.

The status values that are stored in the message vector are intended to
be supplementary information to the status parameters SQLCODE and
SQLSTATE. Use the sql_get_message_vector routine if the information
provided by SQLCODE or SQLSTATE is ambiguous and your application
needs a more specific error code to handle the error condition.

Table 5–2 shows the relationship between the indexes returned by sql_
message_vector and the fields in RDB$MESSAGE_VECTOR.

Table 5–2 Relationship Between sql_message_vector and RDB$MESSAGE_
VECTOR

sql_message_vector Indexes RDB$MESSAGE_VECTOR Fields

Index 1 RDB$LU_NUM_ARGUMENTS
Index 2 RDB$LU_STATUS
Index 3 RDB$LU_ARGUMENTS
Index 4–20 Return status for follow-on

messages, if any

Usage Notes

• The following list shows the languages with which you can use the routine
sql_get_message_vector and how to call it from each language:

Ada

5–18 SQL Routines

sql_get_message_vector

procedure sql_get_message_vector (buffer_name : out ;
index: in);

pragma INTERFACE (NONADA, sql_get_message_vector):

pragma IMPORT_PROCEDURE (INTERNAL => sql_get_message_vector,
EXTERNAL => "sql_get_message_vector",
PARAMETER_TYPES => (integer,integer)
MECHANISM =>(REFERENCE, VALUE));

BASIC

external sub sql_get_message_vector(long by ref, long by value)
call sql_get_message_vector(buffer_name, index)

C

int buffer_name;
int index;

sql_get_message_vector(&buffer_name, index);

Declaring the arguments as the int data type ensures that the correct
data type is used for all platforms.

COBOL

CALL ’sql_get_message_vector’ USING BY REFERENCE buffer-name
BY VALUE index

FORTRAN

CALL sql_get_message_vector (buffer-name, index)

Pascal

var
buffer, index : integer;

procedure sql_get_message_vector (
var buffer: integer;
index : [immediate,readonly] integer); external;

sql_get_message_vector (buffer, index);

PL/I

DCL sql_get_message_vector ENTRY (ANY, FIXED(31) BIN);
CALL sql_get_message_vector (REFERENCE(buffer-name),index)

SQL Routines 5–19

sql_get_message_vector

Related Routines

None.

Example

The following example shows an excerpt of a C program that calls an SQL
module and uses the sql_get_message_vector to return the status of the SQL
statement:

.

.

.
/* Error handler, using sql_get_message_vector. */

get_msgvec()

{
int index;
int status_code;
int arg_cnt;

/* Declare the literal for contraint violation status. */
int RDB$_INTEG_FAIL;

/* Get the message vector argument count. */

index = 1;
sql_get_message_vector(&arg_cnt, index);

/* Get the status code. */

index = 2;
sql_get_message_vector(&status_code, index);

if (status_code == RDB$_INTEG_FAIL)
printf("Constraint violation. ");
printf("You are trying to insert a department code\n");
printf("which already exists in the table.");
exit(1);

/* You can also check for the follow-on arguments, if the arg_cnt is greater
* than 1.
*/
}

main()
{

.

.

.

5–20 SQL Routines

sql_get_message_vector

insert_data (&SQLCODE, department_code, department_name, manager_id);
if (SQLCODE != 0)
get_msgvec();

}

SQL Routines 5–21

sql_register_error_handler

sql_register_error_handler
Registers an application’s error handling routines with the SQL precompiler.

Format
sql_register_error_handler (user-error-routine, user-data)

Returns

No value returned.

Arguments

user-error-routine
The address of an application’s error handling routine

Value: Address of an application’s error handling routine
Data type: Address
Passing mechanism: By value

user-data
The address of the user-specified data

Value: Address of the user-specified data
Data type: Address
Passing mechanism: By value

Description

The sql_register_error_handler routine registers the application’s error
handling routine with SQL. When SQL determines that it will return a
negative value for SQLCODE, SQL calls the error handling routine that is
currently registered. The standard error handling routines are always in
effect, whether special error handling routines have been registered or not.
After the error handling routine executes, control returns to SQL.

An application can contain and call more than one error handling routine.
However, only one routine can be active at a time.

An application can use the sql_get_error_handler routine to store the address
of a registered routine for use later in the program.

To deregister a routine, use the sql_deregister_error_handler routine.

For information about declaring the error handling routines in the supported
programming languages, see the Oracle Rdb Guide to SQL Programming.

5–22 SQL Routines

sql_register_error_handler

Usage Notes

• The application’s error handling routine must accept four parameters. The
following three parameters are passed by reference: RDB$MESSAGE_
VECTOR, SQLCODE, SQLSTATE. The fourth parameter is the address of
the user-specified data and is passed by reference.

• If you call more than one error handling routine, SQL uses the most
recently registered routine.

Related Routines

• sql_deregister_error_handler

• sql_get_error_handler

Example

Example 5–1 shows how to use the SQL error handling routines in a
precompiled C program.

Example 5–1 Using SQL Error Handling Routines

/* This program demonstrates the use of the SQL error handling routines,
* sql_register_error_handler, sql_deregister_error_handler, and
* sql_get_error_handler. Although the use of the sql_get_error_handler
* routine is not necessary in this simple program, it is included here
* to demonstrate how to use the routine to store the address of the
* currently registered routine and the address of user data in variables.
*/

#include <sql_literals.h>

/* Definition of rdb$message_vector. */
typedef struct {

long RDB$LU_NUM_ARGUMENTS;
long RDB$LU_STATUS;
long RDB$LU_ARGUMENTS[18];
} RDB$MESSAGE_VECTOR;

/* Definition of structure to hold user data. */

(continued on next page)

SQL Routines 5–23

sql_register_error_handler

Example 5–1 (Cont.) Using SQL Error Handling Routines

typedef struct {
char sql_proc_name[31];
char sql_col_value[31];

} err_struct;

/* Error handling routine for constraint violations. This routine traps
* constraint violations and prints out an error message.
*/

static
void dupl_error_handler(

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info)

/* The preceding declaration for sqlcode refers to the internal sqlcode value,
* a 32-bit quantity.
*/

{

err_struct *my_info;
my_info = (err_struct *)user_info;

if ((*sqlcode == SQLCODE_INTEG_FAIL) &&
((strcmp(my_info->sql_proc_name, "INSERT_JOBS")) == 0))

{
printf(" The Job Code %s is already in use.\n", my_info->sql_col_value);
}

/* You can add more conditional statements to this error procedure to handle
* errors from several SQL statements.
*/

}

/* Error handling routine for errors that occur when you start a transaction.
* This routine prints out an error message.
*/

static
void txn_error_handler(

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info1)

{

if ((*sqlcode == SQLCODE_DEADLOCK) || (*sqlcode == SQLCODE_BAD_TXN_STATE)
|| (*sqlcode == SQLCODE_LOCK_CONFLICT))

(continued on next page)

5–24 SQL Routines

sql_register_error_handler

Example 5–1 (Cont.) Using SQL Error Handling Routines

printf("Unable to start a transaction. \n");

}

main()

{

/* Variables used by the main program. */

void (*rtn_ptr)();
err_struct *err_struct_ptr = NULL;

char j_code[5];
char w_class[2];
char j_title[21];
char release_screen;

/* Define the SQLCA. */
EXEC SQL INCLUDE SQLCA;

/* Initialize user-defined information. */
err_struct err_s = {" ", " "};

/* Declare the database. */
EXEC SQL DECLARE ALIAS FILENAME ’personnel’;

/* Register the first error handling routine. */
sql_register_error_handler(txn_error_handler,0);

/* Store the address of the currently registered pointer in a variable. */
sql_get_error_handler(&rtn_ptr, &err_struct_ptr);

printf("Please enter the Job Code (or EXIT):\n");
scanf(" %s", j_code);
release_screen = getchar();

while (((strcmp(j_code,"exit")) != 0) &&
((strcmp(j_code,"EXIT")) != 0))

{

(continued on next page)

SQL Routines 5–25

sql_register_error_handler

Example 5–1 (Cont.) Using SQL Error Handling Routines

printf("Enter the Wage Class: ", w_class);
scanf(" %s", w_class);
release_screen = getchar();
while (((strcmp(w_class,"1")) != 0) &&

((strcmp(w_class,"2")) !=0) &&
((strcmp(w_class,"3")) !=0) &&
((strcmp(w_class,"4")) !=0))

{
printf("Please enter one of the following values for Wage Class:\n");
printf(" 1 2 3 4\n");
scanf(" %s", w_class);
release_screen = getchar();
}

printf("Please enter the Job Title: \n");
scanf(" %s", j_title);
release_screen = getchar();

/* Start a transaction. */

EXEC SQL SET TRANSACTION READ WRITE NOWAIT
RESERVING JOBS FOR EXCLUSIVE WRITE;

/* Register the second error handling routine. */
sql_register_error_handler(dupl_error_handler, &err_s);

/* Store information in a structure for use by the error handling routine. */
strcpy(err_s.sql_proc_name, "INSERT_JOBS");
strcpy(err_s.sql_col_value, j_code);

EXEC SQL INSERT INTO JOBS
(JOB_CODE, WAGE_CLASS, JOB_TITLE)
VALUES
(:j_code, :w_class, :j_title);

if (SQLCA.SQLCODE == SQLCODE_SUCCESS)
EXEC SQL COMMIT;

else
EXEC SQL ROLLBACK;

/* Deregister the error handling routine. */
sql_deregister_error_handler();

printf("Please enter the Job Code (or EXIT):\n");
scanf(" %s", j_code);
release_screen = getchar();

(continued on next page)

5–26 SQL Routines

sql_register_error_handler

Example 5–1 (Cont.) Using SQL Error Handling Routines

/* Register the txn_error_handler routine again. Use the address stored in
* rtn_ptr.
*/

sql_register_error_handler(rtn_ptr, 0);

}

return;

}

SQL Routines 5–27

sql_signal

sql_signal

Format
sql_signal ()

Returns

No value returned.

Arguments

None.

Description

The sql_signal routine signals to your program condition handler an error that
occurs on the execution of an SQL statement. If your program does not contain
a condition handler, the sql_routine prints an error message and exits the
program when an error occurs.

If the host language compiler does not provide a signaling mechanism, you
must provide your own condition handler.

Usage Notes

• You can use the name sql$signal to invoke this routine as well as sql_
signal.

• The following list shows the languages with which you can use sql_signal
routine and how to call it from each language:

Ada

procedure SQL_SIGNAL
pragma INTERFACE (NONADA,SQL_SIGNAL)
pragma IMPORT_PROCEDURE (SQL_SIGNAL,"sql_signal")

sql_signal;

See your Ada documentation for information about using calls that
signal errors.

5–28 SQL Routines

sql_signal

BASIC

CALL sql_signal();

See your BASIC documentation for further discussion of creating a
condition handler.

C

sql_signal();

C for OpenVMS provides a run-time library routine, VAXC$ESTABLISH,
that you use to create a program condition handler. See your C
documentation for further discussion of creating a condition handler.

COBOL

CALL "sql_signal"

COBOL for OpenVMS is a language that automatically establishes a
condition handler for you. Therefore, unless your program has called
routines to establish another condition handler, calling sql_signal
causes your COBOL program to display messages and then continue
program execution under control of the COBOL condition handler. See
your COBOL documentation for a discussion of the COBOL condition
handler.

FORTRAN

CALL sql_signal

FORTRAN for OpenVMS is a language for which you either call
LIB$ESTABLISH to create a program condition handler or you rely on
the OpenVMS condition handler. See your FORTRAN documentation
for further discussion of creating a program condition handler.

Pascal

In Pascal programs, you must declare sql_signal as an external
procedure before calling the routine.

procedure sql_signal; external;
sql_signal;

Pascal provides a routine you can use to establish an OpenVMS
condition handler. See your Pascal documentation for further
discussion of creating a program condition handler.

PL/I

SQL Routines 5–29

sql_signal

In PL/I programs, you must declare sql_signal as an external entry
before calling the routine.

DCL sql_signal EXTERNAL ENTRY;
CALL sql_signal;

PL/I is a language that automatically establishes a condition handler
in programs. Therefore, unless your program has called routines
to establish another condition handler, calling sql_signal will cause
your PL/I program to display messages and then continue program
execution under control of the PL/I condition handler. See your PL/I
documentation for a discussion of the PL/I condition handler.

Related Routines

None.

Example

The following excerpt from the SQL$REPORT.SC sample program shows how
to call the sql_signal routine:

/* Main loop */
do

{
/* FETCH by SQL to get a database record */
EXEC SQL FETCH REPORT_CURSOR INTO

:employee_id, :last_name, :first_name,
:job_code, :department_code, :salary_amount;

/* Check return status and take appropriate action */
switch (SQLCA.SQLCODE)

{
/* If a record was returned, print a detail line */
case SQL_SUCCESS :

detail_line();
break;

/* If end of stream is encountered, print the final totals */
case STREAM_EOF :

job_code_foot();
dept_code_foot();
final_foot();
break;

/* Any other status is an error condition and will be trapped by the
SQL error handler */

default :
break;

}
}

while (SQLCA.SQLCODE == SQL_SUCCESS);

5–30 SQL Routines

sql_signal

/* Close the report file */
fclose(report_file);

/* Close the cursor */
EXEC SQL CLOSE REPORT_CURSOR;

/* Rollback the transaction */
EXEC SQL ROLLBACK;

exit(1);

ERROR_HANDLER:
printf("\nAn unexpected error was encountered %d", SQLCA.SQLCODE);
sql_signal();

}

SQL Routines 5–31

Index

% (percent)
See Percent sign (%)

- (hyphen)
See Hyphen (-)

_ (underscore)
See Underscore (_)

: (colon)
See Colon (:)

A
ABS function, 2–193
Actual parameters, 2–47, 2–48

SQL module language, 3–18
Ada language

calling
sql$get_error_text, 5–9
sql_get_error_text, 5–13
sql_get_message_vector, 5–18
sql_signal, 5–28

declarations
supported, 4–35

file name length, 4–24
indicator parameter declaration, 2–51
online sample program, 4–44
SQL_STANDARD package, 4–35

Aggregate function, 2–177
as value expression, 2–125

Alias, 2–25
definition, 3–88, 4–21
for default database, 2–25
reference, 3–88, 4–21
specifying, 2–37

ALIAS keyword
of SQL module language, 3–9

ALIGN_RECORDS qualifier
SQL module processor command line, 3–79

ALL keyword
in functions, 2–178
in quantified predicate, 2–229
in select list, 2–258, 2–260
in UNION clause, 2–260

Alphabetic character
in string literals, 2–96

Alphanumeric character
definition of, 2–16

Alphanumeric data type, 2–69
length of, 2–69
restriction, 2–188

AND Boolean operator, 2–212, 2–214
ANSI/ISO format DATE data type, 2–90
ANSI/ISO SQL standard

Ada package, 4–35
flagging violations of, 3–10, 3–24, 3–86, 4–19

ANSI_FORMAT qualifier
SQL precompiler command line, 4–14

ANY keyword, in quantified predicate, 2–230
ARCHITECTURE qualifier

SQL module processor command line, 3–79
SQL Precompiler command line, 4–14

Arithmetic expression, 2–188
evaluation order, 2–188
including in views, 2–190
storing values with, 2–191
text and date restriction, 2–188

Index–1

Arithmetic operator, 2–188
Arrays

C language restriction on character arrays,
4–53

indicator, 2–51 to 2–55
Pascal language, 4–70
supported types of

Pascal, 4–66
Ascending sort order, 2–242
ASCII character

printable, 2–96
ASC keyword

in select expressions, 2–242
Authentication

user, 2–40
using SQL module processor, 3–91, 3–95
using SQL precompiler, 4–28

AUTHORIZATION clause
stored routine and, 2–27

Authorization identifier, 2–26
in SQL module language, 3–23

AUTHORIZATION keyword
of SQL module language, 3–9

automatic translation, 2–6
AVG function, 2–180

B
BASIC language

calling
sql$get_error_text, 5–9
sql_get_error_text, 5–13
sql_get_message_vector, 5–19
sql_signal, 5–29

indicator parameter declaration, 2–51
Basic predicate, 2–209
Batch-update transaction, 3–84, 4–2
BETWEEN predicate, 2–210
BIGINT data type, 2–81

conversion, 2–89
Binary data

SQL module language, 3–26
SQL precompiler, 4–52
storing as C character string, 3–26, 4–52

Binary input
storing in database, 2–83

BITSTRING function, 2–136
Blank lines

including in SQL modules, 3–27
Boolean operator

AND, 2–212
NOT, 2–212
OR, 2–212

Built-in function, 2–134
as value expression, 2–124

BY DESCRIPTOR clause of SQL module
language, 3–10

BYTE VARYING data type, 2–84

C
Cartesian product, 2–245
CASE expression, 2–196
Case-sensitivity

of user-supplied name, 2–17, 2–19
CAST function, 2–137
Catalog

naming, 2–31
CATALOG keyword

of SQL module language, 3–11
CDD$DEFAULT, 2–43
CDD/Repository software

See Repository
Chained list format, 2–84, 2–85
Character data type, 2–65, 2–69, 3–11

conversion rules, 2–89
conversion to date, 2–90
conversion to numeric, 2–90
length, 2–3, 2–69, 2–162, 3–40, 4–32
maximum length, 2–71
printable, 2–96
qualified, 2–69
restriction, 2–188
truncation, 2–89

Character length
in SQL module language, 3–11, 3–15

CHARACTER LENGTH clause
in precompiled SQL, 4–34
in SQL module language, 3–11, 3–41

Index–2

Character set
coding, 2–3
database

default, 2–8
data type conversion, 2–89
display, 2–9
fixed multi-octet, 2–4
HEX, 2–7
in SQL module language, 3–15, 3–17, 3–19,

3–20
LATIN9, 2–13
length, 2–3, 3–40, 4–32
LIKE predicate and, 2–222
literal, 2–11
mixed multi-octet, 2–4
Multinational character set

printable chararacters, 2–96
multi-octet, 2–4
names, 2–10

in SQL module language, 3–20
national, 2–12
octets used by, 2–4
of parameters

in SQL module language, 3–13
Oracle NLS, 2–14
sample program, 1–18
single-octet, 2–4
standard, 2–1
substring and, 2–162
supported, 2–1
truncation and, 2–89
UNSPECIFIED, 2–15

Character string literals, 2–95
qualified by

character set, 2–98
national character set, 2–98

quoted, 2–96
restriction, 2–188

CHARACTER VARYING data type, 2–69
CHARACTER_LENGTH function, 2–140
CHAR data type, 2–69

conversion, 2–89
interpreted as fixed character string, 3–16
length field as character count in C, 3–20
maximum length, 2–71

CHAR data type (cont’d)
null-terminated byte strings in C, 3–20
qualified, 2–69

CHAR_LENGTH function, 2–140
CHECK keyword

in SQL module language, 3–11
C language

calling
sql$get_error_text, 5–9
sql_get_error_text, 5–14
sql_get_message_vector, 5–19
sql_signal, 5–29

character array restriction, 4–53
character data interpretation options, 3–16
character string interpretation options in SQL

module, 3–36
declarations, 4–45
indicator parameter declaration, 2–51
online sample program, 4–52
storing binary data, 3–26, 4–52
using with repository and SQL module

language, 3–36
C language declarations, 4–45
Closing a cursor, 3–94
COALESCE expression, 2–195
COBOL language

calling
sql$get_error_text, 5–9
sql_get_error_text, 5–14
sql_get_message_vector, 5–19
sql_signal, 5–29

declarations
not supported by SQL, 4–56
supported by SQL, 4–54

file name length, 4–24
indicator parameter declaration, 2–50
online sample program, 4–58
REDEFINES clause, 4–55

Collating sequence behavior
in CONTAINING predicate, 2–215
in LIKE predicate, 2–219
in predicates, 2–205
in STARTING WITH predicate, 2–233

Index–3

Colon (:)
in SQL module language, 2–50, 3–15, 3–21

Column
cannot refer to with parameters, 2–49
in a relational database, 1–1
renaming, 2–241

Column names, 2–32
correlation names, 2–34
outer references, 2–36
qualification required, 2–33

Column select expressions, 2–234, 2–265
as argument to IN, quantified predicates,

2–265
as value expressions, 2–265
predicates and, 2–265
result tables and, 2–234

Comments
characters

exclamation point in interactive SQL,
1–15

hyphens in dynamic SQL, 1–15
hyphens in interactive SQL, 1–15
hyphens in SQL module language, 1–15

including in SQL modules, 3–27
COMMIT statement

using with distributed transaction services,
2–268

Comparison
of supported data types, 2–88

Complex predicate, 2–212
Compound statements

specifying in SQL module language, 3–13
statements that can be executed in, 1–7

COMPOUND TRANSACTIONS keyword
of SQL module language, 3–13

Concatenating value expressions, 2–187
CONCAT function, 2–141
CONCAT_WS function, 2–142
Conditional expression, 2–193

See also Predicate
ABS expression, 2–193
CASE expression, 2–196
COALSECE expression, 2–195
NULLIF expression, 2–201
NVL expression, 2–195

Conditional expression (cont’d)
SIGN expression, 2–203

Conditional operator
See Predicate

Conditions, in predicates
See Predicate

Configuration file
authentication information, 2–41

Configuration parameter
SQL_PASSWORD, 2–41
SQL_USERNAME, 2–41

Connection
creating, 2–37
default for application, 2–37
naming, 2–37

CONNECT qualifier
SQL module processor command line, 3–82
SQL precompiler command line, 4–17

Constant, 2–94
See also Literal
character string, 2–95
CURRENT TIME keyword, 2–144
CURRENT TIMESTAMP keyword, 2–145
CURRENT_DATE keyword, 2–144
CURRENT_UID keyword, 2–148
CURRENT_USER keyword, 2–148
date-time, 2–99
hexadecimal character, 2–99
LOCALTIME keyword, 2–144
LOCALTIMESTAMP keyword, 2–145
NULL keyword, 2–133
numeric, 2–94
SESSION_USER keyword, 2–160
SYSTEM_USER keyword, 2–166
USER keyword, 2–176

Constraint, 2–38
evaluating, 3–83

CONSTRAINTS=OFF qualifier
SQL precompiler command line, 4–18

CONSTRAINTS=ON qualifier
SQL precompiler command line, 4–18

CONSTRAINT_MODE=DEFERRED qualifier
SQL module processor command line, 3–82
SQL precompiler command line, 4–17

Index–4

CONSTRAINT_MODE=IMMEDIATE qualifier
SQL module processor command line, 3–82
SQL precompiler command line, 4–17

CONSTRAINT_MODE=OFF qualifier
SQL module processor command line, 3–82

CONSTRAINT_MODE=ON qualifier
SQL module processor command line, 3–82

CONTAINING predicate, 2–215
behavior of multinational character set,

2–215
CONTEXT= qualifier

SQL module processor command line, 3–83
TRANSACTION_DEFAULT qualifier and,

3–94
Context file, 2–269

with SQL module language, 2–269
Context structure, 2–266

declaring, 3–94, 4–27
Continuation character, 1–14
Continuation of literals in SQL modules, 3–27
Control breaks

with GROUP BY clause, 2–246
Conversion

between supported data types, 2–89
errors converting

fixed-point data, 2–90
floating-point data, 2–90
to DATE, 2–92

of character data, 2–89
of data types, 2–87

in precompiled programs, 4–30
of fixed-point data, 2–89
of floating-point data, 2–90
of text and date data, 2–90, 2–91
of text and numeric data, 2–90
of value expression to lowercase, 2–153
rules for assigning values, 2–89
rules for SQL89, 2–89
rules for SQLV40, 2–89

CONVERT function, 2–143
Correlated references, 2–36
Correlation name, 2–34

in a table reference
restriction, 2–261

outer references, 2–36

Correlation name (cont’d)
specifying in the FROM clause, 2–242

CORRESPONDING clause, 2–242
COUNT function, 2–179
Creating

lists, 2–84
CURRENT TIME function, 2–144
CURRENT TIMESTAMP function, 2–145
CURRENT TIMESTAMP keyword, 2–145
CURRENT_DATE function, 2–144
CURRENT_DATE keyword, 2–144
CURRENT_UID function, 2–148
CURRENT_UID keyword, 2–148
CURRENT_UID value expression, 2–148
CURRENT_USER function, 2–148
CURRENT_USER keyword, 2–148
Cursor

closing, 3–94
naming, 2–38

C_PROTOTYPES qualifier
SQL module processor command line, 3–82

C_STRING qualifier
SQL module processor command line, 3–82

D
Database

attaching several as one unit, 2–37
default access, 2–37
default character set, 2–8
definition of, 2–38
file specifications, 2–39
importance of omitting file extension, 2–40
invoking, 2–37
names, 2–38
schema names, 2–38
storing

binary input, 2–83
graphics data, 2–83

Database environment, 2–37
Database handle

See Alias
Database key, 2–184

as select list item, 2–186
as value expression, 2–125, 2–184

Index–5

Database key (cont’d)
length, 2–187
scope, 2–185
sorting

restriction, 2–187
Database option, 2–268, 3–85, 4–18

for interactive SQL, 2–268
for OpenVMS, 2–268, 3–85, 4–18
for SQL module processor, 2–268, 3–85
for SQL precompiler, 2–268, 4–18
of SQL module processor command line, 3–85
of SQL precompiler command line, 4–18

Database options
OpenVMS, 2–269

Database root file
See Root file

Data parameter, 2–49
DATATRIEVE formatting clauses

DEFAULT VALUE, 2–106
EDIT STRING, 2–105
QUERY HEADER, 2–105
QUERY NAME, 2–105

Data type, 2–65
alphanumeric

length of, 2–69
BIGINT, 2–81
BYTE VARYING, 2–84
CHAR, 2–69

conversion, 2–89
qualified, 2–69

character, 2–65, 2–69, 3–11
conversion rules, 2–89
length of, 2–69
specifying character set of, 3–13
truncation, 2–89

CHARACTER, 2–69
qualified, 2–69

CHARACTER VARYING, 2–69
conversion, 2–87, 2–89, 2–90

in precompiled programs, 4–30
converting DATE, 2–88
DATE, 2–72, 2–91

ANSI/ISO format, 2–92
VMS format, 2–91

date-time, 2–65, 2–72

Data type (cont’d)
DECIMAL, 2–79
DOUBLE PRECISION, 2–82
equivalent SQL module and host language,

3–49
exact numeric

See Data type, fixed-point; Data type,
DECIMAL; Data type, NUMERIC

fixed-point, 2–81
FLOAT, 2–82
floating-point, 2–82
for indicator parameters, 2–50
format, 2–66
integer, 2–65
INTEGER, 2–81
INTERVAL, 2–72
LIST OF BYTE VARYING, 2–82
LIST OF VARBYTE, 2–82
LONG VARCHAR, 2–70
maximum length, 2–71
NATIONAL CHAR, 2–69
NATIONAL CHARACTER, 2–69
NATIONAL CHARACTER VARYING, 2–70
NATIONAL CHAR VARYING, 2–70
NCHAR, 2–69
NCHAR VARYING, 2–70
NUMBER, 2–80
numeric, 2–81, 2–82
NUMERIC, 2–79

not supported for column definitions,
2–79

packed decimal, 2–79
not supported for column definitions,

2–79
QUADWORD

See BIGINT
REAL, 2–82
rules for conversion, 2–89
SMALLINT, 2–81
SQL versus OpenVMS, 2–65
SQL_VARCHAR, 4–38
$SQL_VARCHAR, 4–45, 4–53
supported

Ada, 4–35
C, 4–45

Index–6

Data type
supported (cont’d)

COBOL, 4–54, 4–56
FORTRAN, 4–58, 4–61
Pascal, 4–64, 4–66, 4–69
PL/I, 4–72, 4–74

text, 2–69
length of, 2–69

TIME, 2–72
TIMESTAMP, 2–72
TINYINT, 2–81
unsupported

COBOL, 4–56
FORTRAN, 4–60
PL/I, 4–73

VARBYTE, 2–84
VARCHAR, 2–69

conversion, 2–89
qualified, 2–70

DATE data type, 2–72
converting in programs, 2–88
converting to text, 2–90
format of, 2–91
references from literals, 2–99

Date format
DEFAULT DATE FORMAT clause, 3–15
specifying

in SQL module language, 3–15
Date-time data types, 2–65, 2–72

conversion, 2–90
Date-time literals, 2–99
DATE VMS data type

and arithmetic expressions, 2–188
converting from text, 2–90
converting to text, 2–90

DAY-TIME interval qualifiers
list of, 2–73

DBKEY data type
references from literals, 2–104

DBKEY literal, 2–104
DECIMAL data type, 2–79
Declaration syntax

Pascal, 4–66

DECLARE ALIAS statement, 2–9
national character set, 2–12

DECLARE CURSOR statement
in SQL module, 3–30, 3–32

DECLARE keyword
of SQL module language, 3–14

DECLARE MODULE statement
in precompiled SQL, 4–34

DECLARE TRANSACTION statement
nonexecutable in dynamic SQL, 1–6

DECLARE_MESSAGE_VECTOR qualifier
SQL precompiler command line, 4–18

DECODE function, 2–199
DECRDB$SETVER.COM

See RDB$SETVER.COM
DECRDB$SHOVER.COM command procedure

See RDB$SHOVER.COM command procedure
Default character set, 2–8

in SQL module language, 3–15
of database, 2–8
precedence, 2–9

DEFAULT CHARACTER SET clause
in precompiled SQL, 4–34
in SQL module language, 3–15, 3–41

Default database
defined, 2–25

DEFAULT DATE FORMAT clause
in SQL module language, 3–15

Default transaction
distributed, 3–94, 4–27
starting, 3–94, 4–27

Default value
specifying, 2–106, 2–145

DEFAULT VALUE clause, 2–106
Definer’s rights module

stored routine and, 2–27
Delimited identifier, 2–45

as user-supplied name, 2–17
definition of, 2–17

DEPRECATE qualifier
SQL module processor command line, 3–85
SQL precompiler command line, 4–28

Index–7

Derived table, 2–237, 2–244
in select expression, 2–237, 2–244

Descending sort order, 2–242
DESC keyword

in select expressions, 2–242
Descriptor

See OpenVMS descriptor
DIALECT clause

in SQL module language, 3–15
Dialect setting

in SQL module language, 3–15
display character set

in SQL module language, 3–16
Display character set, 2–9
DISPLAY CHARACTER SET clause

in SQL module language, 3–16
DISTINCT keyword

in COUNT function, 2–179
in select expression, 2–259

Distributed transactions
default, 3–94, 4–27
specifying, 2–266
using embedded SQL statements, 4–2
using module language procedures, 3–83

Domain, 2–43
specifying

in SQL module parameter declarations,
3–21

instead of data types, 3–21
DOUBLE PRECISION data type, 2–82

conversion, 2–90
Dynamic SQL, 2–57

dynamic DECLARE CURSOR statement,
2–57

EXECUTE statement, 2–57
nonexecutable statements, 1–6
PREPARE statement, 2–57
statement names, 2–57

E
EDIT STRING clause, 2–105, 2–107
Ending statements, 1–14
Environments

default for application, 2–37
Environment variable

sql_sample, 1–3
Error handling

logging SQL module processor errors, 3–88
with SQL routines, 5–1, 5–5, 5–6, 5–8, 5–12,

5–17, 5–22, 5–28
Error message

logging SQL module processor errors, 3–88
Escape character

in LIKE predicate, 2–220
ESCAPE clause

in LIKE predicate, 2–222
Euro sign, 2–13
EXCEPT clause, 2–243
Exclamation point as comment flag, 1–15
EXEC SQL, 4–6

USING CONTEXT clause, 4–2
Executable statement, 1–6

for distributed transactions, 4–2
in dynamic SQL, 1–6
in host language programs, 1–6
in interactive SQL, 1–6
specifying in SQL module language, 3–13

EXECUTE statement
USING clause host structures, 2–52

EXISTS predicate, 2–216
Expressions, 2–124, 2–188

column select, 2–234, 2–265
conditional, 2–204
select, 2–234

EXTEND_SOURCE qualifier
SQL precompiler command line, 4–18

External function
parameter, 2–47, 2–56

External procedure
parameter, 2–47, 2–56

Index–8

External routine parameter
See External function
See External procedure

EXTERNAL_GLOBALS qualifier
SQL module processor command line, 3–85
SQL precompiler command line, 4–19

EXTRACT function, 2–149
DAY, 2–149
HOUR, 2–149
JULIAN, 2–149
MINUTE, 2–149
MONTH, 2–149
restriction, 2–150
SECOND, 2–149
WEEKDAY, 2–149
WEEK_NUMBER, 2–149
YEAR, 2–149
YEAR_WEEK, 2–149

F
FETCH clause

of select expression, 2–244
FETCH statement

using host structures, 2–52
Field

See Column
File specification, 2–39

character set name used for, 2–19
using embedded passwords, 2–42
using logical names, 2–40

FILTER clause, 2–178
Fixed-character strings in SQL module language,

3–16
Fixed multi-octet character set, 2–4

definition of, 2–4
Fixed-point data types, 2–81, 2–90
FLAG qualifier

SQL precompiler command line, 4–19
FLAG_NONSTANDARD qualifier

SQL module processor command line, 3–86
FLOAT data type, 2–82
Floating-point data types, 2–82, 2–90

FLOAT qualifier
SQL module processor command line, 3–86
SQL precompiler command line, 4–20

Formal parameters, 2–48
specifying in SQL module language, 3–20
SQL module language, 3–18

Formatting clauses
DEFAULT VALUE, 2–106
EDIT STRING, 2–105
for DATATRIEVE, 2–105
for SQL, 2–105
QUERY HEADER, 2–105
QUERY NAME, 2–105

FORTRAN language
calling sql$get_error_text, 5–9
calling sql_get_error_text, 5–14
calling sql_get_message_vector, 5–19
calling sql_signal, 5–29
declarations, 4–58
fields in host structures, 2–54
implicit declarations not supported, 4–60
indicator parameter declaration, 2–51
online sample program, 4–63

FROM clause
of select expression, 2–245
restriction, 2–261

FROM path-name clause
in SQL module language, 3–17, 3–27

Function
See also Aggregate function
See also Built-in function
AVG, 2–180
BITSTRING, 2–136
CAST, 2–137
CHARACTER_LENGTH, 2–140
CHAR_LENGTH, 2–140
CONCAT, 2–141
CONCAT_WS, 2–142
CONVERT, 2–143
COUNT, 2–179
CURRENT TIME, 2–144
CURRENT TIMESTAMP, 2–145
CURRENT_DATE, 2–144
CURRENT_USER, 2–148
DECODE, 2–199

Index–9

Function (cont’d)
EXTRACT, 2–149
LENGTH, 2–140, 2–153
LENGTHB, 2–153, 2–154
LOCALTIME, 2–144
LOCALTIMESTAMP, 2–145
LOWER, 2–153
MAX, 2–180
MIN, 2–181
OCTET_LENGTH, 2–154
ROUND, 2–158
SESSION_USER, 2–160
SIZEOF, 2–160
STDDEV, 2–181
SUBSTRING, 2–161
SUM, 2–179
SYSDATE, 2–164
SYSTEM_USER, 2–166
SYSTIMESTAMP, 2–165
SYS_GET_DIAGNOSTIC, 2–162
SYS_GUID, 2–163
TRANSLATE, 2–166
TRANSLATE USING, 2–168
TRUNC, 2–173
UPPER, 2–176
USER, 2–176
user defined, 2–183
VARIANCE, 2–182
VSIZE, 2–160

G
Graphics data

storing in database, 2–83
GREATEST function, 2–200
GROUP BY clause, 2–246

control breaks, 2–246
G_FLOAT qualifier

SQL module processor command line, 3–87
SQL precompiler command line, 4–21

H
HAVING clause, 2–246
HEX

character set, 2–7
Hexadecimal character string literals, 2–99
Host language variable

See Parameter
Host parameter

See also Parameter
supported declarations

Ada, 4–35
C, 4–45
COBOL, 4–54
FORTRAN, 4–58
Pascal, 4–64
PL/I, 4–72

unsupported declarations
COBOL, 4–56
FORTRAN, 4–60
Pascal, 4–67
PL/I, 4–73

Host structures, 2–51 to 2–55
Host variable

See Parameter
Hyphen (-)

as comment flag, 1–15
as comment flag in SQL modules, 3–27
as continuation character, 1–14
not equivalent to underscore, 2–19

I
Identifier

character set, 2–10
in SQL module language, 3–17

delimited, 2–45
user-supplied names, 2–16

IDENTIFIER CHARACTER SET clause
in SQL module language, 3–17

IGNORE CASE clause
in LIKE predicate, 2–222

Index–10

Implicit parameter declarations not supported,
4–60

Index
naming, 2–44

Indexed list format, 2–84, 2–85
Indicator array, 2–51 to 2–55

specifying in SQL module parameter
declarations, 3–22

supported in Pascal, 4–66
INDICATOR ARRAY OF clause of SQL module

language, 3–17
Indicator parameter

See Parameter
INITIALIZE_HANDLES qualifier

SQL module processor command line, 3–88
SQL precompiler command line, 4–21

Initial value
assignments in Pascal, 4–66

IN predicate, 2–217
referring to host structures, 2–52

INSERT statement
RETURNING DBKEY clause, 2–186
using host structures, 2–52

INTEGER data type, 2–65, 2–81
conversion, 2–89
scale factors, 2–65

Interactive SQL interface
database options, 2–268
invoking, 1–1
parameter, 2–48
select statements, 2–234

Intermediate result table, 2–237, 2–246, 2–256,
2–260

Internal name
See SQL name

Internationalization features
See also Multinational character set
CONTAINING predicate, 2–215
LIKE predicate, 2–219
STARTING WITH predicate, 2–233

INTERSECT clause, 2–248
INTERVAL data type, 2–72

interval qualifiers, 2–73
references from literals, 2–101

INTERVAL literal, 2–101
Interval qualifiers

day-time, 2–73
list of, 2–73
year-month, 2–73

INTO clause
using host structures, 2–52

Invoker’s rights module
stored routine, 2–27

Invoking interactive SQL, 1–1
IS NOT NULL predicate

See NOT NULL predicate
IS NULL predicate

See NULL predicate

J
Joined table, 2–237, 2–245

cross join, 2–242, 2–245
full outer join, 2–246
inner join, 2–247
in select expression, 2–237, 2–245
left outer join, 2–248
natural join, 2–252
qualified join, 2–245
right outer join, 2–258

K
Keyword

as user-supplied name, 2–19
controlling interpretation of

in SQL module language, 3–15, 3–18
optional, 1–3
optional - uppercase only, 1–13
required, 1–3
required - uppercase and underlined, 1–13

KEYWORD RULES clause
in SQL module language, 3–18

Index–11

L
Language declaration

C, 4–45
COBOL

supported by SQL, 4–54
FORTRAN, 4–58

LANGUAGE keyword
of SQL module language, 3–18

LATIN9 character set, 2–13
LEAST function, 2–200
Length

character, 2–3, 2–69, 3–40, 4–32
in SQL module language, 3–11, 3–15

LENGTHB function, 2–153, 2–154
LENGTH function, 2–140, 2–153
LIKE predicate, 2–219

behavior of Multinational character set,
2–219

column reference, 2–227
escape character, 2–220
ESCAPE clause, 2–222
IGNORE CASE clause, 2–222
percent sign (%), 2–220
support for character set, 2–222
underscore character (_), 2–220
wildcard character, 2–220

Limits and parameters
maximum length for precompiler command

line, 4–29
maximum length of database object name,

2–16, 2–20
LIMIT TO clause, 2–250
Line terminators, 1–14

for embedded SQL statements, 4–6
List

chained format, 2–84, 2–85
creating, 2–84
indexed format, 2–84, 2–85
segment length, 2–82
single-segment format, 2–84
storing unstructured data, 2–83

List file (.lis), 4–22
LIST OF BYTE VARYING data type, 2–82

conversion, 2–90
LIST OF VARBYTE data type

See LIST OF BYTE VARYING data type
LIST qualifier

SQL module processor command line, 3–88
SQL precompiler command line, 4–22

Literal, 2–94
cannot be continued in SQL modules, 3–27
character set, 2–11
character string, 2–95, 2–96

compile-time translation of, 2–104
qualified by

character set, 2–98
national character set, 2–98

CURRENT TIME keyword, 2–144
CURRENT TIMESTAMP keyword, 2–145
CURRENT_DATE keyword, 2–144
CURRENT_UID keyword, 2–148
CURRENT_USER keyword, 2–148
date-time, 2–99
DBKEY literal, 2–104
hexadecimal character, 2–99
in character arrays, 4–53
INTERVAL literal, 2–101
LOCALTIME keyword, 2–144
LOCALTIMESTAMP keyword, 2–145
nonnumeric, 2–95
NULL keyword, 2–133
numeric, 2–94
SESSION_USER keyword, 2–160
SYSTEM_USER keyword, 2–166
USER keyword, 2–176

LITERAL CHARACTER SET clause
in SQL module language, 3–19

LOCALTIME function, 2–144
LOCALTIME keyword, 2–144
LOCALTIMESTAMP function, 2–145
LOCALTIMESTAMP keyword, 2–145
Log file

for compile-time errors with SQL module
processor, 3–88

Index–12

Logical name
CDD$DEFAULT, 2–43
for character set, 2–16
for file specifications, 2–40
for path names, 2–43
SQL$DATABASE, 2–25
SQL$SAMPLE, 1–3

Logical operators
See Boolean operator

LONG VARCHAR data type, 2–70
conversion, 2–89

Lowercase
converting value expression to, 2–153

LOWERCASE_PROCEDURE_NAMES qualifier
SQL module processor command line, 3–89

LOWER function, 2–153

M
MACHINE_CODE qualifier

SQL module processor command line, 3–89
SQL precompiler command line, 4–22

Main parameter
See Data parameter

MATCHING predicate, 2–228
MAX function, 2–180
MIA, 1–17

flagging of nonstandard syntax, 3–86, 4–19
support for default transaction, 3–94, 4–27

MIN function, 2–181
MINUS clause, 2–252
Mixed multi-octet character set, 2–4

definition of, 2–4
.mli file, 4–22
Module

names character set, 3–20
national character set, 3–20

MODULE keyword
of SQL module language, 3–19

Module language
See SQL module language

Module list (.mli) file, 4–22

Module processor
See SQL module processor

Multiline literals in SQL modules, 3–27
Multinational character set, 2–2

behavior
in CONTAINING predicate, 2–215
in LIKE predicate, 2–219
in predicates, 2–205
in STARTING WITH predicate, 2–233

printable characters, 2–96
Multi-octet character set, 2–4

definition of, 2–4
truncation, 2–89

Multischema attribute
ignoring, 2–46

Multischema databases, 2–31
naming conventions, 2–60

Multischema naming
enabling, 2–46

Multistatement procedure variable, 2–56
Multivendor Integration Architecture (MIA)

See MIA

N
Name

alias, 2–25
authorization identifier, 2–26
catalog, 2–31
character set for, 2–10

SQL module language, 3–20
column, 2–32
connection, 2–37
correlation name, 2–34
cursor, 2–38
database, 2–38
domain, 2–43
dynamic SQL statements, 2–57
file specifications, 2–39
index, 2–44
multischema data definition, 2–60
nonstored parameter in SQL module, 2–46
nonstored procedure in SQL module, 2–46
optional qualification, 2–33
parameter, 2–47

Index–13

Name (cont’d)
qualifying

column, 2–33
parameter, 2–54

repository path name, 2–42
schema, 2–57
SQL modules, 2–46
SQL name, 2–60
statement (dynamic), 2–57
stored, 2–60
syntax diagrams, 1–3
table, 2–61
trigger, 2–64
user-supplied, 2–16, 2–20
view, 2–61

NAMES ARE clause
in precompiled SQL, 4–34
in SQL module language, 3–20, 3–41

Naming a query, 2–254
NATIONAL CHARACTER data type, 2–69

maximum length, 2–71
National character set, 2–12

in SQL module language, 3–20
of DECLARE ALIAS statement, 2–12
precedence, 2–12
syntax, 2–12

NATIONAL CHARACTER SET clause
in precompiled SQL, 4–34
in SQL module language, 3–20, 3–41

National character string literal, 2–98
NATIONAL CHARACTER VARYING data type,

2–70
maximum length, 2–71

NATIONAL CHAR data type, 2–69
maximum length, 2–71

NATIONAL CHAR VARYING data type, 2–70
maximum length, 2–71

NCHAR data type, 2–69
maximum length, 2–71

NCHAR VARYING data type, 2–70
maximum length, 2–71

Nested records
supported by

Pascal, 4–65

NOALIGN_RECORDS qualifier
SQL module processor command line, 3–79

NOANSI_FORMAT qualifier
SQL precompiler command line, 4–14

NOCONNECT qualifier
SQL module processor command line, 3–82
SQL precompiler command line, 4–17

NOC_PROTOTYPES qualifier
SQL module processor command line, 3–82

NODECLARE_MESSAGE_VECTOR qualifier
SQL precompiler command line, 4–18

NODEPRECATE qualifier
SQL module processor command line, 3–85
SQL precompiler command line, 4–28

NOEXTEND_SOURCE qualifier
SQL precompiler command line, 4–18

NOEXTERNAL_GLOBALS qualifier
SQL module processor command line, 3–85
SQL precompiler command line, 4–19

NOFLAG qualifier
SQL precompiler command line, 4–19

NOFLAG_NONSTANDARD qualifier
SQL module processor command line, 3–86

NOG_FLOAT qualifier
SQL module processor command line, 3–87
SQL precompiler command line, 4–21

NOINITIALIZE_HANDLES qualifier
SQL module processor command line, 3–88
SQL precompiler command line, 4–21

NOLIST qualifier
SQL module processor command line, 3–88
SQL precompiler command line, 4–22

NOLOWERCASE_PROCEDURE_NAMES
qualifier

SQL module processor command line, 3–89
NOMACHINE_CODE qualifier

SQL module processor command line, 3–89
SQL precompiler command line, 4–22

Nonexecutable statements, 1–6
in dynamic SQL, 1–6
in host language programs, 1–6
in interactive SQL, 1–6

Nonnumeric literals, 2–95

Index–14

NOOBJECT qualifier
SQL module processor command line, 3–89
SQL precompiler command line, 4–22

NOPACKAGE_COMPILATION qualifier
SQL module processor command line, 3–90

NOPARAMETER_CHECK qualifier
SQL module processor command line, 3–91

NOPRAGMA qualifier
SQL Module Language, 3–91
SQL precompiler command line, 4–25

NOPROTOTYPES qualifier
SQL module processor command line, 3–92

NOQUERY_ESTIMATES qualifier
SQL module processor command line, 3–92
SQL precompiler command line, 4–26

NOT Boolean operator, 2–212, 2–214
NOT NULL predicate, 2–218
NOTRANSACTION_DEFAULT qualifier

SQL module processor command line, 3–94
SQL precompiler command line, 4–27

NOWARNING qualifier
SQL module processor command line, 3–95
SQL precompiler command line, 4–28

NOWARN qualifier
SQL module processor command line, 3–95
SQL precompiler command line, 4–28

NULL expression, 2–133
NULLIF expression, 2–201
NULL keyword, 2–133
NULL predicate, 2–218
Null-terminated CHAR fields

C language, 3–20
NULL value

returned by SUM function, 2–179
Number data type, 2–80
Numeric data type

conversion to interval, 2–90
conversion to text, 2–90
DECIMAL, 2–79
decimal string, 2–79
fixed-point, 2–81
floating-point, 2–82
NUMERIC, 2–79

NUMERIC data type, 2–79
Numeric literal, 2–94
NVL2 expression, 2–202
NVL expression, 2–195

O
Object modules

incompatibility between certain versions,
4–29

restriction, 4–29
OBJECT qualifier

SQL module processor command line, 3–89
SQL precompiler command line, 4–22

Obsolete SQL syntax
diagnostic messages, 4–28

Octet
definition of, 2–3
number used by character set, 2–4

OCTET_LENGTH function, 2–154
OFFSET clause, 2–253
Online sample programs

Ada, 4–44
C, 4–52
COBOL, 4–58
FORTRAN, 4–63
Pascal, 4–68
PL/I, 4–75

OPEN statement
USING clause host structures, 2–52

OpenVMS
data types, 2–65
descriptor, 3–10

OpenVMS format DATE data type, 2–90
Operator

arithmetic, 2–188
Boolean, 2–212
conditional, 2–205
text and date restriction, 2–188

OPTIMIZATION_LEVEL qualifier
SQL module processor command line, 3–89
SQL precompiler command line, 4–22

OPTIMIZE clause
AS keyword, 2–254
USING keyword, 2–255

Index–15

Optimizing
queries, 2–254
using an outline, 2–255
using an query name, 2–254

Oracle NLS Character Set names, 2–14
Oracle Rdb database option, 3–85, 4–18

for interactive SQL, 2–268
OR Boolean operator, 2–212, 2–214
ORDER BY clause, 2–256
Organizing tables

with GROUP BY clause, 2–246
Outer references, 2–36
Outline name

using, 2–255

P
PACKAGE_COMPILATION qualifier

SQL module processor command line, 3–90
Packed decimal data type, 2–79
Parameter, 2–47

actual parameters, 2–47, 2–48, 3–18
character data type

length of, 3–40, 4–32
data, 2–49
external function, 2–47
external procedure, 2–47
external routine, 2–47
formal parameters, 2–48, 3–18, 3–20
for sql$get_error_text routine, 5–8
for sql_get_error_text routine, 5–13
host structures, 2–51
indicator, 2–48, 2–49, 2–51

data type, 2–50
restriction on use of arrays, 2–51

indicator array, 2–51 to 2–55
in module procedure, 3–30, 3–32
interactive SQL, 2–48
lists allowed, 2–52
main, 2–49
markers, 2–48
restriction, 2–49
stored function, 2–47, 2–56
stored procedure, 2–47, 2–56
stored routine, 2–47

Parameter (cont’d)
supported declarations

Ada, 4–35
C, 4–45
COBOL, 4–54
FORTRAN, 4–58
Pascal, 4–64
PL/I, 4–72

unsupported declarations
COBOL, 4–56
FORTRAN, 4–60
Pascal, 4–67
PL/I, 4–73

using colon with
in SQL module language, 2–50, 3–15,

3–21
when qualification necessary, 2–54

PARAMETER COLONS clause
in SQL module language, 2–50, 3–21, 3–41

Parameter markers, 2–48
PARAMETER_CHECK qualifier

SQL module processor command line, 3–91
Partitioning tables

with GROUP BY clause
See Organizing tables

Pascal language, 4–70
calling sql$get_error_text, 5–9
calling sql_get_error_text, 5–14
calling sql_get_message_vector, 5–19
calling sql_signal, 5–29
indicator parameter declaration, 2–51
online sample program, 4–68
supported declarations, 4–64
unsupported declarations, 4–67
valid declarations, 4–66

PASSWORD_DEFAULT command line qualifier
SQL module processor, 3–91
SQL precompiler, 4–23

Path names
See Repository, path names

Percent sign (%)
in LIKE predicate, 2–220

Performance
estimating disk I/O operations, 3–92, 4–26

Index–16

Performance (cont’d)
improving compilation time with the SQL

module processor, 3–91
optimizing queries, 2–254

PL/I language
calling

sql$get_error_text, 5–10
sql_get_error_text, 5–14
sql_get_message_vector, 5–19
sql_signal, 5–30

indicator parameter declaration, 2–51
online sample program, 4–75
supported declarations, 4–72
unsupported declarations, 4–73

Pointer variables, restrictions on
Pascal, 4–66

PRAGMA, 3–91, 4–25
PRAGMA keyword

of SQL module language, 3–21
PRAGMA qualifier

SQL Module Language, 3–91
SQL precompiler command line, 4–25

Precompiled programs
embedding SQL statements, 4–6
SQL statement line terminators, 4–6

Precompiler
See SQL precompiler

Predicate, 2–204
ALL, 2–229
ANY, 2–230, 2–231
basic, 2–209
behavior of multinational character set,

2–205
BETWEEN, 2–210
Boolean, 2–212
column select expressions, 2–265
complex, 2–212
CONTAINING, 2–215
EXISTS, 2–216
general format, 2–205
IN, 2–217

and host structures, 2–52
in the HAVING clause, 2–246
in the WHERE clause, 2–260
LIKE, 2–219, 2–222

Predicate (cont’d)
MATCHING, 2–228
NULL, 2–218
quantified, 2–229
result tables, 2–246, 2–260
SINGLE, 2–232
SOME, 2–230
STARTING WITH, 2–233
UNIQUE, 2–234

Prepared statement names, 2–57
Privilege

stored routine, 2–27
PROCEDURE keyword

of SQL module language, 3–21
PROTOTYPES qualifier

SQL module processor command line, 3–92
Proxy account for remote access, 2–41
Punctuation marks in syntax diagrams, 1–4

Q
QUADWORD data type

See BIGINT data type
Qualified character string literals, 2–98
Qualified name

See File specification
Quantified predicate, 2–229

ANY, 2–231
QUERY CPU_TIME_LIMIT qualifier

SQL precompiler command line, 4–26
Query expressions, 2–234
Query governor, 3–92, 3–93, 4–26
QUERY HEADER clause, 2–105, 2–107
QUERY NAME clause, 2–105
Query naming, 2–254
Query optimizer, 2–254
Query specifications, 2–234
QUERY_CPU_TIME_LIMIT qualifier

SQL module processor command line, 3–92
QUERY_ESTIMATES qualifier

SQL module processor command line, 3–92
SQL precompiler command line, 4–26

QUERY_MAX_ROWS qualifier
SQL module processor command line, 3–93
SQL precompiler command line, 4–26

Index–17

QUERY_TIME_LIMIT qualifier
SQL module processor command line, 3–93
SQL precompiler command line, 4–26

QUIET COMMIT keyword
of SQL module language, 3–21

QUIET COMMIT qualifier
SQL precompiler command line, 4–26

QUIET_COMMIT qualifier
SQL precompiler command line, 4–26

Quotation mark
controlling interpretation of

in SQL module language, 3–15, 3–22
in character strings, 2–96

Quoted string, 2–96
in delimited identifiers, 2–45
qualified by character set, 2–98
qualified by national character set, 2–98

Quoting
ANSI/SQL compliant, 2–18
delimited identifiers, 2–18, 2–25

QUOTING RULES clause, 2–18, 2–25
in SQL module language, 3–22

R
RDB$CLIENT_DEFAULTS.DAT configuration

file, 2–41
RDB$DBHANDLE default alias, 2–25
RDB$DBKEY_LENGTH column, 2–187
RDB$SETVER.COM

symbol definition, 1–2
RDB$SETVER.COM command procedure, 1–3
RDB$SHOVER.COM command procedure, 1–3
RDB030 database option, 2–269
RDB031 database option, 2–269
RDB040 database option, 2–269
RDB041 database option, 2–269
RDB042 database option, 2–269
RDB050 database option, 2–269
RDB051 database option, 2–269
RDBVMS database option, 2–269
REAL data type, 2–82

conversion, 2–90

Record definitions
retrieving from repository, 3–22
supported declarations

Pascal, 4–65
Records

specifying in SQL module parameter
declarations, 3–22

specifying instead of data types, 3–22
Relative path name, 2–43
Remote access, 2–40

proxy accounts, 2–41
using

embedded passwords, 2–42
RDB$REMOTE account, 2–41

Renaming
columns, 2–241

Repository
compatibility with Rdb, 2–43
definitions

interpreting CHAR fields in C, 3–16
path names

CDD$DEFAULT logical name, 2–43
in SQL module language, 3–17
specifying, 2–42
using logical names, 2–43

record definitions, 3–17, 3–22
using with C and SQL module language, 3–36

Restriction
C language character array, 4–53
COBOL variable declarations, 4–58
correlation name in a table reference, 2–261
CURRENT_USER keyword, 2–148
database keys

sorting, 2–187
EXTRACT function, 2–150
FORTRAN variable declarations, 4–63
FROM clause, 2–261
FULL OUTER JOIN clause, 2–246
JULIAN keyword, 2–150
object modules, 4–29
Pascal language with SQL precompiler, 4–70
precompiler command line, 4–29
select expression, 2–246
sorting database keys, 2–187
SQL module language, 3–28

Index–18

Restriction (cont’d)
SQL module processor

GENERAL language, 3–95
SQL precompiler, 4–7, 4–29
user-supplied names, 2–17, 2–18

Result tables, 2–234
ascending sort order, 2–242
definition of, 2–38
descending sort order, 2–242
from predicates, 2–246, 2–260
intermediate, 2–237, 2–256
skipping rows, 2–250
sort order

ascending, 2–242
descending, 2–242

specifying number of rows, 2–250
RETURNING DBKEY clause

of INSERT statement, 2–186
RIGHTS clause

in SQL module language, 3–23
ROLLBACK_ON_EXIT command line qualifier

SQL precompiler, 4–27
ROLLBACK_ON_EXIT qualifier

SQL module processor command line, 3–93
Root file

specifying, 2–40
ROUND function, 2–158
Routine

case sensitivity, 5–1
external, 2–183
sql$get_error_text, 5–8
SQL interface, 5–1
sql_close_cursors, 5–3
sql_deregister_error_handler, 5–5
sql_get_error_handler, 5–6
sql_get_error_text, 5–12
sql_get_message_vector, 5–17
sql_register_error_handler, 5–22
sql_signal, 5–28

Rows
in a relational database, 1–1
skipping in result tables, 2–250
specifying in result tables, 2–250

Running interactive SQL, 1–1

S
Sample programs (online)

Ada, 4–44
C, 4–52
COBOL, 4–58
FORTRAN, 4–63
location of, 1–3
multiple character sets, 1–18
Pascal, 4–68
PL/I, 4–75

Scalar expressions, 2–124
Scalar function, 2–134
Scalar subqueries

See Column select expressions
Scale factors in integer data types, 2–65
Schema

See also Database
naming, 2–57

SCHEMA keyword
of SQL module language, 3–24

Schema name, 2–57
Scope of a database key, 2–185
Segmented string identifier, 2–84
Segment length

for lists, 2–82
SELECT clause, 2–237
Select expressions

ALL keyword, 2–258, 2–260
ASC order clause, 2–242
column select expressions, 2–265
CORRESPONDING clause, 2–242
cross join, 2–242
DBKEY keyword, 2–186
derived table, 2–237, 2–244
DESC order clause, 2–242
DISTINCT keyword, 2–259
EDIT USING, 2–243
EXCEPT clause, 2–243
FETCH clause, 2–244
for control breaks, 2–246
FROM clause, 2–245
full outer join, 2–246

Index–19

Select expressions (cont’d)
GROUP BY clause, 2–246
HAVING clause, 2–246
inner join, 2–247
INTERSECT clause, 2–248
joined table, 2–237, 2–245
left outer join, 2–248
LIMIT TO clause, 2–250
MINUS clause, 2–252
natural join, 2–252
OFFSET clause, 2–253
ORDER BY clause, 2–256
order of clause evaluation, 2–237
renaming columns, 2–241
restriction, 2–246
result tables and, 2–234
right outer join, 2–258
SELECT clause, 2–237
select-list, 2–259
to organize tables, 2–246
UNION clause, 2–259
WHERE clause, 2–260

Select lists, 2–243, 2–259
database keys, 2–186
using host structures, 2–52

SELECT statement
database key, 2–186
different forms of, 2–235
terms for, 2–234

Semicolons
terminating statements with, 1–14

SESSION_UID function, 2–160
SESSION_UID keyword, 2–160
SESSION_UID value expression, 2–160
SESSION_USER function, 2–160
SESSION_USER keyword, 2–160
SET DIALECT statement, 2–18
SET QUOTING RULES statement, 2–18
SIGN function, 2–203
Simple statements

statements that can be executed in, 1–7
Single-octet character set

definition of, 2–4

SINGLE predicate, 2–232
Single-segment list format, 2–84
Singleton select statements, 2–234

using host structures, 2–52
SIZEOF function, 2–160
SMALLINT data type, 2–81

conversion, 2–89
Snapshot file

specifying, 2–40
SOME keyword, in quantified predicate, 2–230
Sorting database keys

restriction, 2–187
Sorting result tables, 2–242
Sort keys, 2–257
Special characters, 2–96
Specifying files, 2–39
sql$close_cursors routine

See sql_close_cursors routine
SQL$DATABASE logical name, 2–25
sql$get_error_text routine, 5–8

See also sql_get_error_text
parameter needed for using, 5–8

SQL$SAMPLE logical name, 1–3
sql$signal routine

See sql_signal routine
SQLCA

formal parameter in SQL module language,
3–24

SQLCODE
formal parameter in SQL module language,

3–25
SQLDA

formal parameter in SQL module language,
3–25

SQLDA2
formal parameter in SQL module language,

3–25
SQL data types, 2–65

compared with
OpenVMS, 2–65

supported
Ada, 4–35
C, 4–45
COBOL, 4–54, 4–56

Index–20

SQL data types
supported (cont’d)

FORTRAN, 4–58, 4–61
Pascal, 4–64, 4–69
PL/I, 4–72, 4–74

unsupported
COBOL, 4–56
FORTRAN, 4–60
Pascal, 4–67
PL/I, 4–73

valid
Pascal, 4–66

SQL formatting clauses
EDIT STRING, 2–105
QUERY HEADER, 2–105

SQL interface
invoking interactive SQL, 1–1

SQL module file, 2–46
SQL module language

actual parameters, 3–18
ALIAS keyword, 3–9
authorization identifier, 3–23
AUTHORIZATION keyword, 3–9
BY DESCRIPTOR clause, 3–10
CATALOG keyword, 3–11
CHARACTER LENGTH clause, 3–11, 3–41
character set, 3–15, 3–17, 3–19, 3–20

names, 3–20
parameters, 3–13

CHAR interpretation, 3–16
CHECK keyword, 3–11
COMPOUND TRANSACTIONS keyword,

3–13
context files, 2–269
data type equivalents, 3–49
DECIMAL formal parameters, 2–80
DECLARE keyword, 3–14
default character set, 3–15
DEFAULT CHARACTER SET clause, 3–15,

3–41
DEFAULT DATE FORMAT clause, 3–15
DIALECT clause, 3–15
display character set, 3–16
DISPLAY CHARACTER SET clause, 3–16
formal parameters, 3–18

SQL module language (cont’d)
FROM path-name clause, 3–17
host structures not supported, 2–51
identifier character set, 3–17
IDENTIFIER CHARACTER SET clause,

3–17
improving performance, 3–91
INDICATOR ARRAY OF clause, 3–17
keyword interpretation, 3–15, 3–18
KEYWORD RULES clause, 3–18
LANGUAGE keyword, 3–18
LITERAL CHARACTER SET clause, 3–19
MODULE keyword, 3–19
NAMES ARE clause, 3–20, 3–41
names character set, 3–20
national character set, 3–20
NATIONAL CHARACTER SET clause, 3–20,

3–41
nonstored module names, 2–46
nonstored procedure names, 2–46
NUMERIC formal parameters, 2–80
PARAMETER COLONS clause, 2–50, 3–21,

3–41
parameter declarations

character, 3–40
PRAGMA keyword, 3–21
PROCEDURE keyword, 3–21
QUIET COMMIT keyword, 3–21
QUOTING RULES clause, 3–22
restriction, 3–27
RIGHTS clause, 3–23
SCHEMA keyword, 3–24
specifying a compound statement, 3–13
specifying C character strings, 3–16, 3–36
specifying comments, 3–27
specifying date format, 3–15
specifying domains for data types, 3–21
specifying formal parameters, 3–20
specifying indicator arrays, 3–22
specifying records, 3–22
SQLCA formal parameter, 3–24
SQLCODE formal parameter, 3–25
SQLDA2 formal parameter, 3–25
SQLDA formal parameter, 3–25
SQLSTATE formal parameter, 3–25

Index–21

SQL module language (cont’d)
syntax, 3–3
VIEW UPDATE RULES clause, 3–25

SQL module processor, 3–75
command line qualifiers, 3–15 to 3–24, 3–79

to 3–93
database options, 2–268, 3–85

restriction
GENERAL language, 3–95

SQL name, 2–60
SQLOPTIONS qualifier

SQL precompiler command line, 4–17, 4–18,
4–19, 4–21, 4–28

SQL precompiler, 4–1, 4–4, 4–10
CHARACTER LENGTH clause, 4–34
COBOL variable declarations, 4–54
command line qualifiers, 4–14 to 4–29

database options, 2–268, 4–18
restriction, 4–29

C variable declarations, 4–45
data type conversion, 4–30
DECLARE MODULE statement, 4–34
DEFAULT CHARACTER SET clause, 4–34
embedding SQL statements in programs, 4–6,

4–67
FORTRAN variable declarations, 4–58
language switches

ADA, 4–25
CC, 4–25
CC=DECC, 4–25
CC=VAXC, 4–25
COBOL, 4–25
FORTRAN, 4–25
PASCAL, 4–25
PLI, 4–25

NAMES ARE clause, 4–34
NATIONAL CHARACTER SET clause, 4–34
object module incompatibility, 4–29
parameter

character, 4–32
restriction, 4–29
using embedded SQL statements in

distributed transactions, 4–2

SQL routine, 5–1
case sensitivity, 5–1
documentation format, 5–1
for closing cursors

sql_close_cursors, 5–3
for error handling

sql$get_error_text, 5–8
sql_deregister_error_handler, 5–5
sql_get_error_handler, 5–6
sql_get_error_text, 5–12
sql_get_message_vector, 5–17
sql_register_error_handler, 5–22
sql_signal, 5–28

SQLSTATE formal parameter
in SQL module language, 3–25

SQL statement, 1–7
compound and simple, 1–7
embedded in programs, 4–6

Pascal, 4–67
executable, 1–6
nonexecutable, 1–6
summary, 1–7
using with context structures, 2–266, 4–2

sql_close_cursors routine, 5–3
sql_deregister_error_handler routine, 5–5
sql_get_error_handler routine, 5–6
sql_get_error_text routine, 5–12

parameter needed for using, 5–13
sql_get_message_vector routine, 5–17
SQL_PASSWORD configuration parameter, 2–41
sql_register_error_handler routine, 5–22
sql_sample environment variable, 1–3
sql_signal routine, 5–28
SQL_STANDARD

package for Ada, 4–35
SQL_USERNAME configuration parameter,

2–41
SQL_VARCHAR

data type, 4–38
$SQL_VARCHAR

data type, 4–45, 4–53
Standard

for character set, 2–1

Index–22

STARTING WITH predicate, 2–233
behavior of multinational character set,

2–233
Statement terminators, 1–14
Static descriptor, 3–10
Statistical function, 2–134

See Aggregate function
STDDEV function, 2–181
STDDEV_POP function, 2–181
STDDEV_SAMP function, 2–181
Storage area

definition of, 2–59
Storage maps

definition of, 2–60
Stored function

parameter, 2–47, 2–56
Stored names, 2–60
Stored procedure

parameter, 2–47, 2–56
Stored routine

accessing schema objects through, 2–27
definer’s right module for, 2–27
invoker’s rights module, 2–27
privileges to execute, 2–27

Stored routine parameter
See Stored function
See Stored procedure

Storing data
binary, 2–83
graphics, 2–83

Storing values with arithmetic expressions,
2–191

String concatenation operator, 2–187
String literal, 2–95

alphabetic characters, 2–96
qualified by character set, 2–98
qualified by national character set, 2–98

Structured Transaction Definition Language
(STDL), 3–94, 4–27

Structures, 2–51 to 2–54
Subqueries

See Column select expressions

Subselect statements, 2–234
Substring

character set and, 2–162
SUBSTRING function, 2–161
SUM function, 2–179
Support for Oracle Rdb

character sets, 2–1
Symbol definition

using RDB$SETVER.COM, 1–2
Syntax diagrams, 1–4

elements of, 1–4, 1–5
optional keywords, 1–3
punctuation marks, 1–4
reading, 1–3
references to other diagrams, 1–3
required keywords, 1–3

SYS$CURRENCY logical name, 2–108
SYS$DIGIT_SEP logical name, 2–108
SYS$RADIX_POINT logical name, 2–108
SYSDATE function, 2–164
System relations

Consult online SQL Help for this information
System tables

Consult online SQL Help for this information
SYSTEM_UID function, 2–166
SYSTEM_UID keyword, 2–166
SYSTEM_UID value expression, 2–166
SYSTEM_USER function, 2–166
SYSTEM_USER keyword, 2–166
SYSTIMESTAMP function, 2–165
SYS_GET_DIAGNOSTIC function, 2–162
SYS_GUID function, 2–163

T
Table

cannot refer to with parameters, 2–49
in a relational database, 1–1
intermediate result, 2–237
naming, 2–61
result table defined, 2–234

Terminating statements, 1–14

Index–23

Text data types, 2–69
conversion

rules, 2–89
to date, 2–90, 2–91
to numeric, 2–90

length of, 2–69
restriction, 2–188
to date, 2–90
truncation, 2–89

TIME data type, 2–72
references from literals, 2–99

TIMESTAMP data type, 2–72
references from literals, 2–99

TINYINT data type, 2–81
TODAY string literal

translation of, 2–104
TOMORROW string literal

translation of, 2–104
Transaction identification number

in precompiled SQL statement, 4–2
Transactions

BATCH UPDATE mode, 3–84, 4–2
default

distributed, 3–94, 4–27
starting, 3–94, 4–27

starting, 4–27
TRANSACTION_DEFAULT qualifier

SQL module processor command line, 3–94
SQL precompiler command line, 4–27

TRANSLATE function, 2–166
TRANSLATE USING function, 2–168
Triggers

naming, 2–64
TRIM function, 2–172
Truncation of text data, 2–89

multi-octet character, 2–89
TRUNC function, 2–173
Truth tables

AND operator, 2–213
NOT operator, 2–213
OR operator, 2–213

Tuples
See Rows

Two-phase commit protocol, 2–266

U
Underscore (_)

cannot substitute hyphen for, 2–19
in LIKE predicate, 2–220

UNION clause, 2–259
ALL keyword, 2–260

UNIQUE predicate, 2–234
UNSPECIFIED

character set, 2–15
Uppercase

converting value expression to, 2–176
UPPER function, 2–176
User authentication, 2–40

using SQL module processor, 3–91, 3–95
using SQL precompiler, 4–28

User-defined function
overview of, 2–183

User-defined routine
See also user-defined function
overview of, 2–183

USER function, 2–176
USER keyword, 2–176
User-supplied name, 2–16, 2–20

aliases, 2–25
authorization identifiers, 2–26
case sensitivity of, 2–17, 2–19
character set of, 2–19
columns, 2–32
constraints, 2–38
correlation names, 2–34
cursors, 2–38
database, 2–38
delimited identifiers and, 2–17
domains, 2–43
dynamic SQL statements, 2–57
file specifications, 2–39
identifier, 2–16
index, 2–44
in syntax diagrams, 1–4
keyword as, 2–19
nonstored modules, 2–46
nonstored parameter in SQL modules, 2–46

Index–24

User-supplied name (cont’d)
nonstored procedure in SQL modules, 2–46
parameters, 2–47
path names, 2–42
qualifying columns, 2–33
repository path names, 2–42
restriction, 2–17, 2–18
SQL modules, 2–46
SQL names, 2–60
statement names, 2–57
storage areas, 2–59
storage maps, 2–60
stored names, 2–60
tables, 2–61
triggers, 2–64
views, 2–61

USER_DEFAULT command line qualifier
SQL module processor, 3–95
SQL precompiler, 4–28

USING CONTEXT clause
of precompiled SQL statement, 4–2
TRANSACTION_DEFAULT=DISTRIBUTED

qualifier and, 4–27
TRANSACTION_DEFAULT qualifier and,

4–27

V
Value expression

aggregate functions, 2–177
arithmetic, 2–188
AVG, 2–180
BITSTRING, 2–136
built-in functions, 2–134
CAST, 2–137
CHARACTER_LENGTH, 2–140
CHAR_LENGTH, 2–140
column select expressions, 2–265
concatenating, 2–187
CURRENT TIME, 2–144
CURRENT TIMESTAMP, 2–145
CURRENT_DATE, 2–144
CURRENT_USER, 2–148
definition, 2–124
EXTRACT, 2–149
in character arrays, 4–53

Value expression (cont’d)
in COUNT function, 2–179
LENGTH, 2–140
LENGTHB, 2–154
LOCALTIMESTAMP, 2–145
LOWER, 2–153
MAX, 2–180
MIN, 2–181
OCTET_LENGTH, 2–154
SESSION_USER, 2–160
SIZEOF, 2–160
STDDEV, 2–181
SUBSTRING, 2–161
SUM, 2–179
SYSTEM_USER, 2–166
text and date restriction, 2–188
TRANSLATE, 2–166
TRANSLATE USING, 2–168
UPPER, 2–176
USER, 2–176
VARIANCE, 2–182

VARBYTE data type
See BYTE VARYING data type

VARCHAR data type, 2–69
conversion, 2–89
maximum length, 2–71
qualified, 2–70

Variable, 2–47
See also Parameter
main, 2–49
multistatement procedure, 2–56

VARIANCE function, 2–182
VAR_POP function, 2–182
VAR_SAMP function, 2–182
Version

restriction involving object modules, 4–29
View

cannot refer to with parameters, 2–49
including arithmetic expressions in, 2–190
naming, 2–61
update of

controlling interpretation of
in SQL module language, 3–15, 3–25

Index–25

VIEW UPDATE RULES clause
in SQL module language, 3–25

VMS
See OpenVMS

VSIZE function, 2–160

W
warning-option

SQL precompiler command line, 4–29
WARNING qualifier

SQL module processor command line, 3–95
SQL precompiler command line, 4–28

WARN qualifier
SQL module processor command line, 3–95
SQL precompiler command line, 4–28

WHENEVER statement

error handling, 3–27
WHERE clause, 2–260
Wildcard character

in COUNT function, 2–179
in LIKE predicate, 2–220
in select lists, 2–241

Word-integer arrays
supported in

Pascal, 4–66

Y
YEAR-MONTH interval qualifiers

list of, 2–73
YESTERDAY string literal

translation of, 2–104

Index–26

